Learn R Programming

CNVassoc (version 2.2)

CNVassoc-internal: Internal CNVassoc functions

Description

Internal CNVassoc functions

Usage

assocCNV.i(x, formula, num.copies, cnv.tol, ...) EMlogistic(y, X, w, beta, tol = 10^-6, max.iter = 1000, verbose = FALSE) EMnorm(y, X, w, beta, sigma, variant, tol = 10^-6, max.iter = 1000, verbose = FALSE) EMpoisson(y, X, w, beta, tol = 10^-6, max.iter = 1000, verbose = FALSE) EMWeibull(y, cens, X, w, beta, alpha, tol = 10^-6, max.iter = 1000, verbose = FALSE) hessianLinear(beta, sigma, y, w, X, variant) hessianLogistic(beta, y, w, X, variant) hessianPoisson(beta, y, w, X, variant) hessianWeibull(beta, alpha, y, cens, w, X, variant) ifelsem(test, yes, no) linear.fit(x, y, weights, tol = 1e-08, max.iter = 25, verbose = FALSE) logistic.fit(x, y, weights, tol = 1e-08, max.iter = 25, verbose = FALSE) matrix2vector(betam, variant) mix(mixdat, method, num.class, mean.ini, sigma.ini, pi.ini, var.equal) mixture(intensities, num.class, mix.method, threshold.0, threshold.k, mu.ini, sigma.ini, pi.ini, var.equal) NRlogistic(y, X, w, beta, variant, tol, max.iter, verbose) NRnorm(y, X, w, beta, sigma, variant, tol = 10^-6, max.iter = 1000, verbose = FALSE) plot.cnv.intensities(x, my.colors = c("black", "red", "blue"), ylab = "Peak Intensity", xlab = c("individuals", "Phenotype"), case.control, cex.leg = 0.8, dens.bw = "nrd0", dens.adjust = 1, ...) plot.cnv.probabilities(x, my.colors = c("black", "red", "blue"), case.control, ylab = "CNV probability", xlab, ...) vector2matrix(betav, variant, J) is.quantitative(formula, data) getProbsRegions.i(i, blocks, probs, annotation, nclass) plapply(X, FUN, ...) translate(obj)

Arguments

Details

These are not to be called by the user