Last chance! 50% off unlimited learning
Sale ends in
The NBF()
function defines the Negative Binomial family distribution, a three parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions dNBF
, pNBF
, qNBF
and rNBF
define the density, distribution function, quantile function and random generation for the negative binomial family, NBF()
, distribution.
The functions dZINBF
, pZINBF
, qZINBF
and rZINBF
define the density, distribution function, quantile function and random generation for the zero inflated negative binomial family, ZINBF()
, distribution a four parameter distribution.
NBF(mu.link = "log", sigma.link = "log", nu.link = "log")dNBF(x, mu = 1, sigma = 1, nu = 2, log = FALSE)
pNBF(q, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
qNBF(p, mu = 1, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
rNBF(n, mu = 1, sigma = 1, nu = 2)
ZINBF(mu.link = "log", sigma.link = "log", nu.link = "log",
tau.link = "logit")
dZINBF(x, mu = 1, sigma = 1, nu = 2, tau = 0.1, log = FALSE)
pZINBF(q, mu = 1, sigma = 1, nu = 2, tau = 0.1, lower.tail = TRUE,
log.p = FALSE)
qZINBF(p, mu = 1, sigma = 1, nu = 2, tau = 0.1, lower.tail = TRUE,
log.p = FALSE)
rZINBF(n, mu = 1, sigma = 1, nu = 2, tau = 0.1)
The link function for mu
The link function for sigma
The link function for nu
The link function for tau
vector of (non-negative integer)
vector of positive means
vector of positive dispersion parameter
vector of power parameter
vector of inflation parameter
logical; if TRUE, probabilities p are given as log(p)
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
vector of probabilities
vector of quantiles
number of random values to return
returns a gamlss.family
object which can be used to fit a Negative Binomial Family distribution in the gamlss()
function.
The definition for Negative Binomial Family distribution , NBF
, is similar to the Negative Binomial type I. The probability function of the NBF
can be obtained by replacing
Anscombe, F. J. (1950) Sampling theory of the negative binomial and logarithmic distributions, Biometrika, 37, 358-382.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
# NOT RUN {
NBF() # default link functions for the Negative Binomial Family
# plotting the distribution
plot(function(y) dNBF(y, mu = 10, sigma = 0.5, nu=2 ), from=0,
to=40, n=40+1, type="h")
# creating random variables and plot them
tN <- table(Ni <- rNBF(1000, mu=5, sigma=0.5, nu=2))
r <- barplot(tN, col='lightblue')
# zero inflated NBF
ZINBF() # default link functions for the zero inflated NBF
# plotting the distribution
plot(function(y) dZINBF(y, mu = 10, sigma = 0.5, nu=2, tau=.1 ),
from=0, to=40, n=40+1, type="h")
# creating random variables and plot them
tN <- table(Ni <- rZINBF(1000, mu=5, sigma=0.5, nu=2, tau=0.1))
r <- barplot(tN, col='lightblue')
# }
# NOT RUN {
library(gamlss)
data(species)
species <- transform(species, x=log(lake))
m6 <- gamlss(fish~poly(x,2), sigma.fo=~1, data=species, family=NBF,
n.cyc=200)
fitted(m6, "nu")[1]
# }
Run the code above in your browser using DataLab