Learn R Programming

gamlss.dist (version 4.3-4)

NOF: Normal distribution family for fitting a GAMLSS

Description

The function NOF() defines a normal distribution family, which has three parameters. The distribution can be used in a GAMLSS fitting using the function gamlss(). The mean of NOF is equal to mu. The variance is equal to sigma^2*mu^nu so the standard deviation is sigma*mu^(nu/2). The function is design for cases where the variance is proportional to a power of the mean. The functions dNOF, pNOF, qNOF and rNOF define the density, distribution function, quantile function and random generation for the NOF parametrization of the normal distribution family.

Usage

NOF(mu.link = "identity", sigma.link = "log", nu.link = "identity")
dNOF(x, mu = 0, sigma = 1, nu = 0, log = FALSE)
pNOF(q, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE)
qNOF(p, mu = 0, sigma = 1, nu = 0, lower.tail = TRUE, log.p = FALSE)
rNOF(n, mu = 0, sigma = 1, nu = 0)

Arguments

mu.link
Defines the mu.link, with "identity" link as the default for the mu parameter
sigma.link
Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link
Defines the nu.link with "identity" link as the default for the nu parameter
x,q
vector of quantiles
mu
vector of location parameter values
sigma
vector of scale parameter values
nu
vector of power parameter values
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are P[X <= x],="" otherwise,="" p[x=""> x]
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is taken to be the number required

Value

  • returns a gamlss.family object which can be used to fit a normal distribution family in the gamlss() function.

Details

The parametrization of the normal distribution given in the function NOF() is $$f(y|\mu,\sigma, \nu)=\frac{1}{\sqrt{2 \pi }\sigma \mu^{\nu/2}}\exp \left[-\frac{1}{2}\frac{(y-\mu)^2}{\sigma^2 \mu^\nu}\right]$$ for $y=(-\infty,\infty)$, $\mu=(-\infty,\infty)$, $\sigma>0$ and $\nu=(-\infty,+\infty)$.

References

Davidian, M. and Carroll, R. J. (1987), Variance Function Estimation, Journal of the American Statistical Association, Vol. 82, pp. 1079-1091 Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554. Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/). Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

gamlss.family, NO, NO2

Examples

Run this code
NOF()# gives information about the default links for the normal distribution family
# library(gamlss)
#data(abdom)        
## the normal distribution fit with constant sigma
#m1<-gamlss(y~poly(x,2), sigma.fo=~1, family=NO, data=abdom)
## the normal family fit with variance proportional to mu
#m2<-gamlss(y~poly(x,2), sigma.fo=~1, family=NOF, data=abdom, method=mixed(1,20))
## a nornal distribution fit with variance as a function of x
#m3 <-gamlss(y~poly(x,2), sigma.fo=~x,   family=NO, data=abdom, method=mixed(1,20)) 
#GAIC(m1,m2,m3)

Run the code above in your browser using DataLab