# NOT RUN {
## DATA MATRIX IS GIVEN
## A 2-dimensional example
set.seed(1)
x<-rbind(matrix(rnorm(100,sd=0.1),ncol=2),
matrix(rnorm(100,mean=1,sd=0.2),ncol=2),
matrix(rnorm(100,mean=5,sd=0.1),ncol=2),
matrix(rnorm(100,mean=7,sd=0.2),ncol=2))
res<-NbClust(x, distance = "euclidean", min.nc=2, max.nc=8,
method = "complete", index = "ch")
res$All.index
res$Best.nc
res$Best.partition
## A 5-dimensional example
set.seed(1)
x<-rbind(matrix(rnorm(150,sd=0.3),ncol=5),
matrix(rnorm(150,mean=3,sd=0.2),ncol=5),
matrix(rnorm(150,mean=1,sd=0.1),ncol=5),
matrix(rnorm(150,mean=6,sd=0.3),ncol=5),
matrix(rnorm(150,mean=9,sd=0.3),ncol=5))
res<-NbClust(x, distance = "euclidean", min.nc=2, max.nc=10,
method = "ward.D", index = "all")
res$All.index
res$Best.nc
res$All.CriticalValues
res$Best.partition
## A real data example
data<-iris[,-c(5)]
res<-NbClust(data, diss=NULL, distance = "euclidean", min.nc=2, max.nc=6,
method = "ward.D2", index = "kl")
res$All.index
res$Best.nc
res$Best.partition
res<-NbClust(data, diss=NULL, distance = "euclidean", min.nc=2, max.nc=6,
method = "kmeans", index = "hubert")
res$All.index
res<-NbClust(data, diss=NULL, distance = "manhattan", min.nc=2, max.nc=6,
method = "complete", index = "all")
res$All.index
res$Best.nc
res$All.CriticalValues
res$Best.partition
## Examples with a dissimilarity matrix
## Data matrix is given
set.seed(1)
x<-rbind(matrix(rnorm(150,sd=0.3),ncol=3),
matrix(rnorm(150,mean=3,sd=0.2),ncol=3),
matrix(rnorm(150,mean=5,sd=0.3),ncol=3))
diss_matrix<- dist(x, method = "euclidean", diag=FALSE)
res<-NbClust(x, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=6,
method = "ward.D", index = "ch")
res$All.index
res$Best.nc
res$Best.partition
data<-iris[,-c(5)]
diss_matrix<- dist(data, method = "euclidean", diag=FALSE)
NbClust(data, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=6,
method = "ward.D2", index = "all")
res$All.index
res$Best.nc
res$All.CriticalValues
res$Best.partition
set.seed(1)
x<-rbind(matrix(rnorm(20,sd=0.1),ncol=2),
matrix(rnorm(20,mean=1,sd=0.2),ncol=2),
matrix(rnorm(20,mean=5,sd=0.1),ncol=2),
matrix(rnorm(20,mean=7,sd=0.2),ncol=2))
diss_matrix<- dist(x, method = "euclidean", diag=FALSE)
res<-NbClust(x, diss=diss_matrix, distance = NULL, min.nc=2, max.nc=6,
method = "ward.D2", index = "alllong")
res$All.index
res$Best.nc
res$All.CriticalValues
res$Best.partition
## Data matrix is not available. Only the dissimilarity matrix is given
## In this case, only these indices can be computed : frey, mcclain, cindex, silhouette and dunn
res<-NbClust(diss=diss_matrix, distance = NULL, min.nc=2, max.nc=6,
method = "ward.D2", index = "silhouette")
res$All.index
res$Best.nc
res$All.CriticalValues
res$Best.partition
# }
Run the code above in your browser using DataLab