require(splines)
require(stats)
require(graphics)
ns( women$height, df = 3)
Ns( women$height, knots=c(63,59,71,67) )
# Gives the same results as ns:
summary( lm(weight ~ ns(height, df = 3), data = women) )
summary( lm(weight ~ Ns(height, df = 3), data = women) )
# Get the diabetes data and set up as Lexis object
data(DMlate)
DMlate <- DMlate[sample(1:nrow(DMlate),500),]
dml <- Lexis( entry = list(Per=dodm, Age=dodm-dobth, DMdur=0 ),
exit = list(Per=dox),
exit.status = factor(!is.na(dodth),labels=c("DM","Dead")),
data = DMlate )
# Split follow-up in 1-year age intervals
dms <- splitLexis( dml, time.scale="Age", breaks=0:100 )
summary( dms )
# Model age-specific rates using Ns with 6 knots
# and period-specific RRs around 2000 with 4 knots
# with the same number of deaths between each pair of knots
n.kn <- 6
( a.kn <- with( subset(dms,lex.Xst=="Dead"),
quantile( Age+lex.dur, probs=(1:n.kn-0.5)/n.kn ) ) )
n.kn <- 4
( p.kn <- with( subset(dms,lex.Xst=="Dead"),
quantile( Per+lex.dur, probs=(1:n.kn-0.5)/n.kn ) ) )
m1 <- glm( lex.Xst=="Dead" ~ Ns( Age, kn=a.kn ) +
Ns( Per, kn=p.kn, ref=2000 ),
offset = log( lex.dur ), family=poisson, data=dms )
# Plot estimated age-mortality curve for the year 2005 and knots chosen:
nd <- data.frame(Age=40:90,Per=2005,lex.dur=1000)
par( mfrow=c(1,2) )
matplot( nd$Age, ci.pred( m1, newdata=nd ),
type="l", lwd=c(3,1,1), lty=1, col="black", log="y",
ylab="Mortality rates per 1000 PY", xlab="Age (years)", las=1 )
rug( a.kn, lwd=2 )
Run the code above in your browser using DataLab