## Not run:
# require(OutlierDC)
# # Toy example
# data(ebd)
# # The data consists of 402 observations with 6 variables.
# dim(ebd)
# # To show the first six observations of the dataset,
# head(ebd)
#
# #scoring algorithm
# fit <- odc(Surv(log(time), status) ~ meta, data = ebd)
# fit
# coef(fit)
# plot(fit)
#
# # Add upper bound for the selection of outleirs
# fit1 <- update(fit, k_s = 4)
# fit1
# plot(fit1)
#
# # residual-based algorithm
# fit2 <- odc(Surv(log(time), status) ~ meta, data = ebd, method = "residual", k_r = 1.5)
# fit2
# plot(fit2)
#
# # To display all of outlying observations in the fitted object
# fit2@outlier.data
#
# # boxplot algorithm
# fit3 <- odc(Surv(log(time), status) ~ meta, data = ebd, method = "boxplot", k_b = 1.5)
# fit3
# plot(fit3, ylab = "log survival times", xlab = "metastasis lymph nodes")
# ## End(Not run)
Run the code above in your browser using DataLab