Learn R Programming

pbkrtest (version 0.5.3)

pb_modcomp: Model comparison using parametric bootstrap methods.

Description

Model comparison of nested models using parametric bootstrap methods. Implemented for some commonly applied model types.

Usage

PBmodcomp(
  largeModel,
  smallModel,
  nsim = 1000,
  ref = NULL,
  seed = NULL,
  cl = NULL,
  details = 0
)

# S3 method for merMod PBmodcomp( largeModel, smallModel, nsim = 1000, ref = NULL, seed = NULL, cl = NULL, details = 0 )

# S3 method for lm PBmodcomp( largeModel, smallModel, nsim = 1000, ref = NULL, seed = NULL, cl = NULL, details = 0 )

seqPBmodcomp(largeModel, smallModel, h = 20, nsim = 1000, cl = 1)

Arguments

largeModel

An lmer model

smallModel

An lmer model or a restriction matrix

nsim

The number of simulations to form the reference distribution.

ref

Vector containing samples from the reference distribution. If NULL, this vector will be generated using PBrefdist().

seed

A seed that will be passed to the simulation of new datasets.

cl

A vector identifying a cluster; used for calculating the reference distribution using several cores. See examples below.

details

The amount of output produced. Mainly relevant for debugging purposes.

h

For sequential computing for bootstrap p-values: The number of extreme cases needed to generate before the sampling process stops.

Author

Søren Højsgaard sorenh@math.aau.dk

Details

The model object must be fitted with maximum likelihood (i.e. with REML=FALSE). If the object is fitted with restricted maximum likelihood (i.e. with REML=TRUE) then the model is refitted with REML=FALSE before the p-values are calculated. Put differently, the user needs not worry about this issue.

Under the fitted hypothesis (i.e. under the fitted small model) nsim samples of the likelihood ratio test statistic (LRT) are generated.

Then p-values are calculated as follows:

LRT: Assuming that LRT has a chi-square distribution.

PBtest: The fraction of simulated LRT-values that are larger or equal to the observed LRT value.

Bartlett: A Bartlett correction is of LRT is calculated from the mean of the simulated LRT-values

Gamma: The reference distribution of LRT is assumed to be a gamma distribution with mean and variance determined as the sample mean and sample variance of the simulated LRT-values.

F: The LRT divided by the number of degrees of freedom is assumed to be F-distributed, where the denominator degrees of freedom are determined by matching the first moment of the reference distribution.

References

Ulrich Halekoh, Søren Højsgaard (2014)., A Kenward-Roger Approximation and Parametric Bootstrap Methods for Tests in Linear Mixed Models - The R Package pbkrtest., Journal of Statistical Software, 58(10), 1-30., https://www.jstatsoft.org/v59/i09/

See Also

KRmodcomp, PBrefdist

Examples

Run this code

if (FALSE) { 
(fm0 <- lmer(Reaction ~ (Days|Subject), sleepstudy))
(fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy))
(fm2 <- lmer(Reaction ~ Days + I(Days^2) + (Days|Subject), sleepstudy))

NSIM <- 50 ## Simulations in parametric bootstrap; default is 1000.

## Test for no effect of Days in fm1, i.e. test fm0 under fm1
PBmodcomp(fm1, "Days", cl=1, nsim=NSIM)
PBmodcomp(fm1, ~.-Days, cl=1, nsim=NSIM)
L1 <- cbind(0, 1) 
## PBmodcomp(fm1, L1, cl=1, nsim=NSIM) ## FIXME
PBmodcomp(fm1, fm0, cl=1, nsim=NSIM)
anova(fm1, fm0)

## Test for no effect of Days and Days-squared in fm2, i.e. test fm0 under fm2
PBmodcomp(fm2, "(Days+I(Days^2))", cl=1, nsim=NSIM)
PBmodcomp(fm2, ~. - Days - I(Days^2), cl=1, nsim=NSIM)
L2 <- rbind(c(0, 1, 0), c(0, 0, 1))
## PBmodcomp(fm2, L2, cl=1, nsim=NSIM) ## FIXME
PBmodcomp(fm2, fm0, cl=1, nsim=NSIM)
anova(fm2, fm0)


## Test for no effect of Days-squared in fm2, i.e. test fm1 under fm2
PBmodcomp(fm2, "I(Days^2)", cl=1, nsim=NSIM)
PBmodcomp(fm2, ~. - I(Days^2), cl=1, nsim=NSIM)
L3 <- rbind(c(0, 0, 1))
## PBmodcomp(fm2, L3, cl=1, nsim=NSIM) ## FIXME
PBmodcomp(fm2, fm1, cl=1, nsim=NSIM)
anova(fm2, fm1)


## Linear normal model:
sug <- lm(sugpct ~ block + sow + harvest, data=beets)
sug.h <- update(sug, .~. -harvest)
sug.s <- update(sug, .~. -sow)

PBmodcomp(sug, "harvest", nsim=NSIM, cl=1)
PBmodcomp(sug, ~. - harvest, nsim=NSIM, cl=1)
PBmodcomp(sug, sug.h, nsim=NSIM, cl=1)
anova(sug, sug.h)

## Generalized linear model
mm <- glm(ndead/ntotal ~ sex + log(dose), family=binomial, weight=ntotal, data=budworm)
mm0 <- update(mm, .~. -sex)

### Test for no effect of sex
PBmodcomp(mm, "sex", cl=1, nsim=NSIM)
PBmodcomp(mm, ~.-sex, cl=1, nsim=NSIM)
## PBmodcomp(mm, cbind(0, 1, 0), nsim=NSIM): FIXME
PBmodcomp(mm, mm0, cl=1, nsim=NSIM)
anova(mm, mm0, test="Chisq")
}

## Generalized linear mixed model (it takes a while to fit these)

if (FALSE) {
(gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),
              data = cbpp, family = binomial))
(gm2 <- update(gm1, .~.-period))

PBmodcomp(gm1, "period", nsim=NSIM)
PBmodcomp(gm1, ~. -period, nsim=NSIM)
PBmodcomp(gm1, gm2, nsim=NSIM)
anova(gm1, gm2)
}


if (FALSE) {
## Linear mixed effects model:
sug   <- lmer(sugpct ~ block + sow + harvest + (1|block:harvest),
              data=beets, REML=FALSE)
sug.h <- update(sug, .~. -harvest)
sug.s <- update(sug, .~. -sow)

anova(sug, sug.h)
PBmodcomp(sug, sug.h, nsim=NSIM, cl=1)
PBmodcomp(sug, "harvest", nsim=NSIM, cl=1)

anova(sug, sug.s)
PBmodcomp(sug, sug.s, nsim=NSIM, cl=1)
PBmodcomp(sug, "sow", nsim=NSIM, cl=1)

## Simulate reference distribution separately:
refdist <- PBrefdist(sug, sug.h, nsim=1000, cl=1)
refdist <- PBrefdist(sug, "harvest", nsim=1000, cl=1)
refdist <- PBrefdist(sug, ~.-harvest, nsim=1000, cl=1)

## Do computations with multiple processors:
## Number of cores:

(nc <- detectCores())
## Create clusters
cl <- makeCluster(rep("localhost", nc))

## Then do:
refdist <- PBrefdist(sug, sug.h, nsim=1000, cl=cl)

## It is recommended to stop the clusters before quitting R:
stopCluster(cl)
}

Run the code above in your browser using DataLab