# NOT RUN {
### IASA model
## Parameters and intial conditions.
pars_solve_iasa = c(
b1 = 21871, b2 = 4374,
df1 = 0.104, dm1 = 0.098, df2 = 0.125, dm2 = 0.118,
sf1 = 0.069, sf2 = 0.05, sm1 = 0.028, sm2 = 0.05,
k1 = 98050, k2 = 8055, h1 = 1, h2 = 0.5,
a = 0.054, alpha = 0.1, v = 0.2, z = 0.1)
init_solve_iasa = c(
f1 = 33425, fs1 = 10865,
m1 = 38039, ms1 = 6808,
f2 = 3343, fs2 = 109,
m2 = 3804, ms2 = 68)
# Solve for point estimates.
solve_iasa_pt <- SolveIASA(pars = pars_solve_iasa,
init = init_solve_iasa,
time = 0:10, method = 'rk4')
# Solve for parameter ranges.
solve_iasa_rg <- SolveIASA(pars = pars_solve_iasa,
init = init_solve_iasa,
time = 0:10,
s.range = seq(0, .4, l = 15),
a.range = c(0, .2),
alpha.range = c(0, .2),
v.range = c(0, .1),
method = 'rk4')
## Plot stray population sizes using point estimates
## Not run
PlotModels(solve_iasa_pt, variable = "ns2")
## Plot all scenarios and change the label for the scenarios.
## Not run
PlotModels(solve_iasa_rg, variable = "ns")
## End(Not run)
# }
Run the code above in your browser using DataLab