# NOT RUN {
library(RGENERATEPREC)
data(trentino)
year_min <- 1961
year_max <- 1990
period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
period_temp <- TEMPERATURE_MAX$year>=year_min & TEMPERATURE_MAX$year<=year_max
prec_mes <- PRECIPITATION[period,]
Tx_mes <- TEMPERATURE_MAX[period_temp,]
Tn_mes <- TEMPERATURE_MIN[period_temp,]
accepted <- array(TRUE,length(names(prec_mes)))
names(accepted) <- names(prec_mes)
for (it in names(prec_mes)) {
acc <- TRUE
acc <- (length(which(!is.na(Tx_mes[,it])))==length(Tx_mes[,it]))
acc <- (length(which(!is.na(Tn_mes[,it])))==length(Tn_mes[,it])) & acc
accepted[it] <- (length(which(!is.na(prec_mes[,it])))==length(prec_mes[,it])) & acc
}
valmin <- 1.0
prec_mes <- prec_mes[,accepted]
Tx_mes <- Tx_mes[,accepted]
Tn_mes <- Tn_mes[,accepted]
prec_occurrence_mes <- prec_mes>=valmin
station <- names(prec_mes)[!(names(prec_mes) %in% c("day","month","year"))]
it <- station[2]
vect <- Tx_mes[,it]-Tn_mes[,it]
months <- factor(prec_mes$month)
model <- PrecipitationOccurrenceModel(x=prec_mes[,it],exogen=vect,monthly.factor=months)
probs <- predict(model$glm,type="response")
plot(months[-1],probs)
newdata <- model$predictor[2000:2007,]
probs0 <- predict(model,newdata=newdata)
# }
Run the code above in your browser using DataLab