RGE
defines the reverse generalized extreme family distribution, a three parameter distribution,
for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions dRGE
, pRGE
, qRGE
and rRGE
define the density, distribution function, quantile function and random
generation for the specific parameterization of the reverse generalized extreme distribution given in details below.RGE(mu.link = "identity", sigma.link = "log", nu.link = "log")
dRGE(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE)
pRGE(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
qRGE(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
rRGE(n, mu = 1, sigma = 0.1, nu = 1)
mu.link
, with "identity" link as the default for the mu parametersigma.link
, with "log" link as the default for the sigma parameternu.link
, with "log" link as the default for the nu parameterlength(n) > 1
, the length is
taken to be the number requiredRGE()
returns a gamlss.family
object which can be used to fit a reverse generalized extreme distribution in the gamlss()
function.
dRGE()
gives the density, pRGE()
gives the distribution
function, qRGE()
gives the quantile function, and rRGE()
generates random deviates.The probability density function of the generalized extreme value distribution is obtained from Johnson et al. (1995), Volume 2, p76, equation (22.184) [where $(\xi, \theta, \gamma) \longrightarrow (\mu, \sigma, \nu)$].
The probability density function of the reverse generalized extreme value distribution is then obtained by replacing y by -y and $\mu$ by $-\mu$.
Hence the probability density function of the reverse generalized extreme value distribution with $\nu>0$ is given by
$$f(y|\mu,\sigma, \nu)=\frac{1}{\sigma}\left[1+\frac{\nu(y-\mu)}{\sigma}\right]^{\frac{1}{\nu}-1}S_1(y|\mu,\sigma,\nu)$$
for $$\mu-\frac{\sigma}{\nu} where $$S_1(y|\mu,\sigma,\nu)=\exp\left{-\left[1+\frac{\nu(y-\mu)}{\sigma}\right]^\frac{1}{\nu}\right}$$ and where $-\infty<\mu Note the the above distribution is a reparameterization of the three parameter Weibull distribution given by $$f(y|\alpha_1,\alpha_2,\alpha_3)=\frac{\alpha_3}{\alpha_2}\left[\frac{y-\alpha_1}{\alpha_2}\right]^{\alpha_3-1} \exp\left[ -\left(\frac{y-\alpha_1}{\alpha_2} \right)^{\alpha_3} \right]$$ given by setting $\alpha_1=\mu-\sigma/\nu$, $\alpha_2=\sigma/\nu$, $\alpha_3=1/\nu$.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R.
Accompanying documentation in the current GAMLSS help files, (see also
gamlss.family
RGE()# default links for the reverse generalized extreme family distribution
newdata<-rRGE(100,mu=0,sigma=1,nu=5) # generates 100 random observations
# library(gamlss)
# gamlss(newdata~1, family=RGE, method=mixed(5,50)) # difficult to converse
Run the code above in your browser using DataLab