RMqam
is a univariate stationary covariance model depending
on a submodel $phi$ such that
$psi( . ) := phi(sqrt( . ))$
is completely monotone, and depending on further stationary
covariance models $C_i$. The covariance is given by
RMqam(phi, C1, C2, C3, C4, C5, C6, C7, C8, C9, theta, var, scale, Aniso, proj)
RMmodel
that is a normal
scale mixture. See, for instance,
RFgetModelNames(monotone="normal mixture")
RMmodel
.RMmodel
. If not passed, the above covariance function remains unmodified.RMstable
, RMgauss
, RMexponential
.
Warning: RandomFields
cannot check whether the combination
of $phi$ and $C_i$ is valid.
RMmqam
,
RMmodel
,
RFsimulate
,
RFfit
.
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
model <- RMqam(phi=RMgauss(), RMexp(), RMgauss(),
theta=c(0.3, 0.7), scale=0.5)
x <- seq(0, 10, 0.02)
plot(model)
plot(RFsimulate(model, x=x))
Run the code above in your browser using DataLab