Learn R Programming

gamlss.dist (version 4.3-4)

SEP1: The Skew Power exponential type 1-4 distribution for fitting a GAMLSS

Description

These functions define the Skew Power exponential type 1 to 4 distributions. All of them are four parameter distributions and can be used to fit a GAMLSS model. The functions dSEP1, dSEP2, dSEP3 and dSEP4 define the probability distribution functions, the functions pSEP1, pSEP2, pSEP3 and pSEP4 define the cumulative distribution functions the functions qSEP1, qSEP2, qSEP3 and qSEP4 define the inverse cumulative distribution functions and the functions rSEP1, rSEP2, rSEP3 and rSEP4 define the random generation for the Skew exponential power distributions.

Usage

SEP1(mu.link = "identity", sigma.link = "log", nu.link = "identity", 
     tau.link = "log")
dSEP1(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pSEP1(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, 
     log.p = FALSE)
qSEP1(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, 
     log.p = FALSE)
rSEP1(n, mu = 0, sigma = 1, nu = 0, tau = 2)

SEP2(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dSEP2(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE) pSEP2(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) qSEP2(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) rSEP2(n, mu = 0, sigma = 1, nu = 0, tau = 2)

SEP3(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dSEP3(x, mu = 0, sigma = 1, nu = 2, tau = 2, log = FALSE) pSEP3(q, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE, log.p = FALSE) qSEP3(p, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE, log.p = FALSE)

SEP4(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dSEP4(x, mu = 0, sigma = 1, nu = 2, tau = 2, log = FALSE) pSEP4(q, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE, log.p = FALSE) qSEP4(p, mu = 0, sigma = 1, nu = 2, tau = 2, lower.tail = TRUE, log.p = FALSE) rSEP4(n, mu = 0, sigma = 1, nu = 2, tau = 2)

Arguments

mu.link
Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are "inverse" and "log"
sigma.link
Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse" and "identity"
nu.link
Defines the nu.link, with "log" link as the default for the nu parameter. Other links are "identity" and "inverse"
tau.link
Defines the tau.link, with "log" link as the default for the tau parameter. Other links are "inverse", and "identity
x,q
vector of quantiles
mu
vector of location parameter values
sigma
vector of scale parameter values
nu
vector of skewness nu parameter values
tau
vector of kurtosis tau parameter values
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are P[X <= x],="" otherwise,="" p[x=""> x]
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is taken to be the number required

Value

  • SEP2() returns a gamlss.family object which can be used to fit the SEP2 distribution in the gamlss() function. dSEP2() gives the density, pSEP2() gives the distribution function, qSEP2() gives the quantile function, and rSEP2() generates random deviates.

Details

The probability density function of the Skew Power exponential distribution type 2, (SEP2), is defined as $$f_Y(y|\mu,\sigma\,\nu,\tau)=\frac{\nu}{\sigma (1+\nu^2)2^{1/\tau} \Gamma(1+1/\tau)}\left{\exp\left(- \frac{1}{2} \left|\frac{\nu (y-\mu)}{\sigma} \right|^\tau \right) I(y<\mu)+\exp\left(- \frac{1}{2}="" \left|\frac{(y-\mu)}{\sigma="" \nu}="" \right|^\tau="" \right)="" i(y="" \geq="" \mu)\right}$$<="" p="">

for $-\infty < y < \infty$, $\mu=(-\infty,+\infty)$, $\sigma>0$, $\nu>0)$ and $\tau>0$.

References

Fernadez C., Osiewalski J. and Steel M.F.J.(1995) Modelling and inference with v-spherical distributions. JASA, 90, pp 1331-1340.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Stasinopoulos D. M. Rigby R. A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

gamlss.family, SEP

Examples

Run this code
SEP1() 
curve(dSEP4(x, mu=5 ,sigma=1, nu=2, tau=1.5), -2, 10, 
          main = "The SEP4  density mu=5 ,sigma=1, nu=1, tau=1.5")
# library(gamlss)
#y<- rSEP4(100, mu=5, sigma=1, nu=2, tau=1.5);hist(y)
#m1<-gamlss(y~1, family=SEP1, n.cyc=50)
#m2<-gamlss(y~1, family=SEP2, n.cyc=50)
#m3<-gamlss(y~1, family=SEP3, n.cyc=50)
#m4<-gamlss(y~1, family=SEP4, n.cyc=50) 
#GAIC(m1,m2,m3,m4)

Run the code above in your browser using DataLab