Learn R Programming

gamlss.dist (version 4.3-4)

SI: The Sichel dustribution for fitting a GAMLSS model

Description

The SI() function defines the Sichel distribution, a three parameter discrete distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dSI, pSI, qSI and rSI define the density, distribution function, quantile function and random generation for the Sichel SI(), distribution.

Usage

SI(mu.link = "log", sigma.link = "log", nu.link = "identity")
dSI(x, mu = 0.5, sigma = 0.02, nu = -0.5, log = FALSE)
pSI(q, mu = 0.5, sigma = 0.02, nu = -0.5, lower.tail = TRUE, 
       log.p = FALSE)
qSI(p, mu = 0.5, sigma = 0.02, nu = -0.5, lower.tail = TRUE, 
    log.p = FALSE, max.value = 10000)
rSI(n, mu = 0.5, sigma = 0.02, nu = -0.5)
tofyS(y, mu, sigma, nu, what = 1)

Arguments

mu.link
Defines the mu.link, with "log" link as the default for the mu parameter
sigma.link
Defines the sigma.link, with "log" link as the default for the sigma parameter
nu.link
Defines the nu.link, with "identity" link as the default for the nu parameter
x
vector of (non-negative integer) quantiles
mu
vector of positive mu
sigma
vector of positive despersion parameter
nu
vector of nu
p
vector of probabilities
q
vector of quantiles
n
number of random values to return
log, log.p
logical; if TRUE, probabilities p are given as log(p)
lower.tail
logical; if TRUE (default), probabilities are P[X <= x],="" otherwise,="" p[x=""> x]
max.value
a constant, set to the default value of 10000 for how far the algorithm should look for q
y
the y variable. The function tofyS() should be not used on its own.
what
take values 1 or 2, for function tofyS().

Value

  • Returns a gamlss.family object which can be used to fit a Sichel distribution in the gamlss() function.

Details

The probability function of the Sichel distribution is given by $$f(y|\mu,\sigma,\nu)= \frac{\mu^y K_{y+\nu}(\alpha)}{(\alpha \sigma)^{y+\nu} y! K_\nu(\frac{1}{\sigma})}$$ where $\alpha^2=\frac{1}{\sigma^2}+\frac{2\mu}{\sigma}$, for $y=0,1,2,...,\infty$ where $\mu>0$ , $\sigma>0$ and $-\infty < \nu

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2003) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

Stein, G. Z., Zucchini, W. and Juritz, J. M. (1987). Parameter Estimation of the Sichel Distribution and its Multivariate Extension. Journal of American Statistical Association, 82, 938-944.

See Also

gamlss.family, PIG, NBI, NBII

Examples

Run this code
SI()# gives information about the default links for the  Sichel distribution 
#plot the pdf using plot 
plot(function(y) dSI(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf
# plot the cdf
plot(seq(from=0,to=100),pSI(seq(from=0,to=100), mu=10, sigma=1, nu=1), type="h")   # cdf
# generate random sample
tN <- table(Ni <- rSI(100, mu=5, sigma=1, nu=1))
r <- barplot(tN, col='lightblue')
# fit a model to the data 
# library(gamlss)
# gamlss(Ni~1,family=SI, control=gamlss.control(n.cyc=50))

Run the code above in your browser using DataLab