# NOT RUN {
PurTrt <- Puromycin[ Puromycin$state == "treated", ]
SSmicmen(PurTrt$conc, 200, 0.05) # response only
local({ Vm <- 200; K <- 0.05
SSmicmen(PurTrt$conc, Vm, K) # response _and_ gradient
})
print(getInitial(rate ~ SSmicmen(conc, Vm, K), data = PurTrt), digits = 3)
## Initial values are in fact the converged values
fm1 <- nls(rate ~ SSmicmen(conc, Vm, K), data = PurTrt)
summary(fm1)
## Alternative call using the subset argument
fm2 <- nls(rate ~ SSmicmen(conc, Vm, K), data = Puromycin,
subset = state == "treated")
summary(fm2) # The same indeed:
stopifnot(all.equal(coef(summary(fm1)), coef(summary(fm2))))
## Visualize the SSmicmen() Michaelis-Menton model parametrization :
xx <- seq(0, 5, len = 101)
yy <- 5 * xx/(1+xx)
stopifnot(all.equal(yy, SSmicmen(xx, Vm = 5, K = 1)))
require(graphics)
op <- par(mar = c(0, 0, 3.5, 0))
plot(xx, yy, type = "l", lwd = 2, ylim = c(-1/4,6), xlim = c(-1, 5),
ann = FALSE, axes = FALSE, main = "Parameters in the SSmicmen model")
mtext(quote(list(phi[1] == "Vm", phi[2] == "K")))
usr <- par("usr")
arrows(usr[1], 0, usr[2], 0, length = 0.1, angle = 25)
arrows(0, usr[3], 0, usr[4], length = 0.1, angle = 25)
text(usr[2] - 0.2, 0.1, "x", adj = c(1, 0))
text( -0.1, usr[4], "y", adj = c(1, 1))
abline(h = 5, lty = 3)
arrows(-0.8, c(2.1, 2.9),
-0.8, c(0, 5 ), length = 0.1, angle = 25)
text( -0.8, 2.5, quote(phi[1]))
segments(1, 0, 1, 2.7, lty = 2, lwd = 0.75)
text(1, 2.7, quote(phi[2]))
par(op)
# }
Run the code above in your browser using DataLab