powered by
This function builds a classification model using Support Vector Machine with a radial kernel.
SVMr( train, labels, gamma = 2^(-3:3), cost = 2^(-3:3), methodparameters = NULL, tune = FALSE, ... )
The training set (description), as a data.frame.
data.frame
Class labels of the training set (vector or factor).
vector
factor
The gamma parameter (if a vector, cross-over validation is used to chose the best size).
The cost parameter (if a vector, cross-over validation is used to chose the best size).
Object containing the parameters. If given, it replaces gamma and cost.
gamma
cost
If true, the function returns paramters instead of a classification model.
Other arguments.
The classification model.
svm, SVM
svm
SVM
# NOT RUN { require (datasets) data (iris) SVMr (iris [, -5], iris [, 5], gamma = 1, cost = 1) # }
Run the code above in your browser using DataLab