powered by
This function builds a regression model using Support Vector Machine with a linear kernel.
SVRl( x, y, cost = 2^(-3:3), epsilon = c(0.1, 0.5, 1), params = NULL, tune = FALSE, ... )
Predictor matrix.
matrix
Response vector.
vector
The cost parameter (if a vector, cross-over validation is used to chose the best size).
The epsilon parameter (if a vector, cross-over validation is used to chose the best size).
Object containing the parameters. If given, it replaces epsilon, gamma and cost.
epsilon
gamma
cost
If true, the function returns paramters instead of a classification model.
Other arguments.
The classification model.
svm, SVR
svm
SVR
# NOT RUN { require (datasets) data (trees) SVRl (trees [, -3], trees [, 3], cost = 1) # }
Run the code above in your browser using DataLab