Learn R Programming

ThreeWay (version 1.1.3)

T1: Interactive Tucker1 analysis

Description

Detects the underlying structure of a three-way array according to the Tucker1 (T1) model.

Usage

T1(dati, laba, labb, labc)

Value

A list including the following components:

A

Component matrix for the A-mode

B

Component matrix for the B-mode

C

Component matrix for the C-mode

core

Matricized core array (frontal slices)

fit

Fit value expressed as a percentage

fitA

Fit contributions for the A-mode entities (see T3fitpartitioning)

fitB

Fit contributions for the B-mode entities (see T3fitpartitioning)

fitC

Fit contributions for the C-mode entities (see T3fitpartitioning)

laba

Vector of length n containing the labels of the A-mode entities

labb

Vector of length m containing the labels of the B-mode entities

labc

Vector of length P containing the labels of the C-mode entities

Xprep

Matrix of order (n x mp) containing the matricized array (frontal slices) after preprocessing used for the analysis

Arguments

dati

Array of order n by m by p or matrix or data.frame of order (n x mp) containing the matricized array (frontal slices)

laba

Optional vector of length n containing the labels of the A-mode entities

labb

Optional vector of length m containing the labels of the B-mode entities

labc

Optional vector of length p containing the labels of the C-mode entities

Author

Maria Antonietta Del Ferraro mariaantonietta.delferraro@yahoo.it
Henk A.L. Kiers h.a.l.kiers@rug.nl
Paolo Giordani paolo.giordani@uniroma1.it

References

P. Giordani, H.A.L. Kiers, M.A. Del Ferraro (2014). Three-way component analysis using the R package ThreeWay. Journal of Statistical Software 57(7):1--23. http://www.jstatsoft.org/v57/i07/.
P.M. Kroonenberg (2008). Applied Multiway Data Analysis. Wiley, New Jersey.
L.R Tucker (1966). Some mathematical notes on three-mode factor analysis. Psychometrika 31:279--311.

See Also

CP,T3,T2

Examples

Run this code
data(Bus)
# labels for Bus data
laba <- rownames(Bus)
labb <- substr(colnames(Bus)[1:5],1,1)
labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)],3,8)
if (FALSE) {
# interactive T1 analysis
BusT1 <- T1(Bus, laba, labb, labc)
# interactive T1 analysis (when labels are not available)
BusT1 <- T1(Bus)
}

Run the code above in your browser using DataLab