The tensor predictor regression model is of the form,
$$\mathbf{Y} = \mathbf{B}_{(m+1)}\mathrm{vec}(\mathbf{X}) +\boldsymbol{\varepsilon}$$
where response \(\mathbf{Y} \in R^{r}\), predictor \(\mathbf{X} \in R^{p_1\times \cdots\times p_m}\), and
the error term is multivariate normal distributed. The predictor is tensor normal distributed,
$$\mathbf{X}\sim TN(0;\boldsymbol{\Sigma}_1,\dots,\boldsymbol{\Sigma}_m)$$
According to the tensor envelope structure, we have
$$\mathbf{B} = [\Theta;\boldsymbol{\Gamma}_1,\ldots,\boldsymbol{\Gamma}_m,\mathbf{I}_p], \quad \mbox{for some } \boldsymbol{\Theta} \in R^{u_1\times\cdots\times u_m \times p}$$
$$\boldsymbol{\Sigma}_k = \boldsymbol{\Gamma}_k\boldsymbol{\Omega}_k\boldsymbol{\Gamma}_k^{T}+\boldsymbol{\Gamma}_{0k}\boldsymbol{\Omega}_{0k}\boldsymbol{\Gamma}_{0k}^\top,
\quad \mbox{for some } \boldsymbol{\Omega}_k, \boldsymbol{\Omega}_{0k},\ k=1,\ldots,m.$$