da.thresh(wc, alpha = .05, max.level = 4, verbose = FALSE, return.thresh = FALSE)
hybrid.thresh(wc, max.level = 4, verbose = FALSE, seed = 0)
manual.thresh(wc, max.level = 4, value, hard = TRUE)
sure.thresh(wc, max.level = 4, hard = TRUE)
universal.thresh(wc, max.level = 4, hard = TRUE)
universal.thresh.modwt(wc, max.level = 4, hard = TRUE)
verbose=T
then information is printed to the screenmanual.thresh
)hard=F
then soft thresholding is usedhybrid.thresh
)return.thresh=T
then the vector of
threshold values is returned, otherwise the surviving wavelet
coefficients are returnedOgden, R. T. (1996) Essential Wavelets for Statistical Applications and Data Analysis, Birkhauser.
Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge University Press.
Vidakovic, B. (1999) Statistical Modeling by Wavelets, John Wiley & Sons.