VaR(R = NULL, p = 0.95, ..., method = c("modified", "gaussian", "historical", "kernel"), clean = c("none", "boudt", "geltner"), portfolio_method = c("single", "component", "marginal"), weights = NULL, mu = NULL, sigma = NULL, m3 = NULL, m4 = NULL, invert = TRUE)
Return.clean
.
Current options are "none", "boudt", or "geltner".quantile
. More
efficient estimates of VaR are obtained if a (correct) assumption is made on
the return distribution, such as the normal distribution. If your return
series is skewed and/or has excess kurtosis, Cornish-Fisher estimates of VaR
can be more appropriate. For the VaR of a portfolio, it is also of interest
to decompose total portfolio VaR into the risk contributions of each of the
portfolio components. For the above mentioned VaR estimators, such a
decomposition is possible in a financially meaningful way.Cont, Rama, Deguest, Romain and Giacomo Scandolo. Robustness and sensitivity analysis of risk measurement procedures. Financial Engineering Report No. 2007-06, Columbia University Center for Financial Engineering.
Denton M. and Jayaraman, J.D. Incremental, Marginal, and Component VaR. Sunguard. 2004.
Epperlein, E., Smillie, A. Cracking VaR with kernels. RISK, 2006, vol. 19, 70-74.
Gourieroux, Christian, Laurent, Jean-Paul and Olivier Scaillet. Sensitivity analysis of value at risk. Journal of Empirical Finance, 2000, Vol. 7, 225-245.
Keel, Simon and Ardia, David. Generalized marginal risk. Aeris CAPITAL discussion paper.
Laurent Favre and Jose-Antonio Galeano. Mean-Modified Value-at-Risk Optimization with Hedge Funds. Journal of Alternative Investment, Fall 2002, v 5.
Martellini, Lionel, and Volker Ziemann. Improved Forecasts of Higher-Order Comoments and Implications for Portfolio Selection. 2007. EDHEC Risk and Asset Management Research Centre working paper.
Return to RiskMetrics: Evolution of a Standard http://www.riskmetrics.com/publications/techdocs/r2rovv.html
Zangari, Peter. A VaR Methodology for Portfolios that include Options. 1996. RiskMetrics Monitor, First Quarter, 4-12.
Rockafellar, Terry and Uryasev, Stanislav. Optimization of Conditional VaR. The Journal of Risk, 2000, vol. 2, 21-41.
Dowd, Kevin. Measuring Market Risk, John Wiley and Sons, 2010.
Jorian, Phillippe. Value at Risk, the new benchmark for managing financial risk. 3rd Edition, McGraw Hill, 2006.
Hallerback, John. "Decomposing Portfolio Value-at-Risk: A General Analysis", 2003. The Journal of Risk vol 5/2.
Yamai and Yoshiba (2002). "Comparative Analyses of Expected Shortfall and Value-at-Risk: Their Estimation Error, Decomposition, and Optimization", Bank of Japan.
SharpeRatio.modified
chart.VaRSensitivity
Return.clean
data(edhec)
# first do normal VaR calc
VaR(edhec, p=.95, method="historical")
# now use Gaussian
VaR(edhec, p=.95, method="gaussian")
# now use modified Cornish Fisher calc to take non-normal distribution into account
VaR(edhec, p=.95, method="modified")
# now use p=.99
VaR(edhec, p=.99)
# or the equivalent alpha=.01
VaR(edhec, p=.01)
# now with outliers squished
VaR(edhec, clean="boudt")
# add Component VaR for the equal weighted portfolio
VaR(edhec, clean="boudt", portfolio_method="component")
Run the code above in your browser using DataLab