WEI
can be used to define the Weibull distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
. [Note that the GAMLSS function WEI2
uses a
different parameterization for fitting the Weibull distribution.]
The functions dWEI
, pWEI
, qWEI
and rWEI
define the density, distribution function, quantile function and random
generation for the specific parameterization of the Weibul distribution.WEI(mu.link = "log", sigma.link = "log")
dWEI(x, mu = 1, sigma = 1, log = FALSE)
pWEI(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qWEI(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rWEI(n, mu = 1, sigma = 1)
mu.link
, with "log" link as the default for the mu parameter, other links are "inverse", "identity" and "own"sigma.link
, with "log" link as the default for the sigma parameter, other link is the "inverse", "identity" and "own"length(n) > 1
, the length is
taken to be the number requiredWEI()
returns a gamlss.family
object which can be used to fit a Weibull distribution in the gamlss()
function.
dWEI()
gives the density, pWEI()
gives the distribution
function, qWEI()
gives the quantile function, and rWEI()
generates random deviates. The latest functions are based on the equivalent R
functions for Weibull distribution.WEI
is given by
$$f(y|\mu,\sigma)=\frac{\sigma y^{\sigma-1}}{\mu^\sigma}
\hspace{1mm} \exp \left[ -\left(\frac{y }{\mu}\right)^{\sigma}
\right]$$
for $y>0$, $\mu>0$ and $\sigma>0$.
The GAMLSS functions dWEI
, pWEI
, qWEI
, and rWEI
can be used to provide the pdf, the cdf, the quantiles and
random generated numbers for the Weibull distribution with argument mu
, and sigma
.
[See the GAMLSS function WEI2
for a different parameterization of the Weibull.]gamlss.family
, WEI2
, WEI3
WEI()
dat<-rWEI(100, mu=10, sigma=2)
# library(gamlss)
# gamlss(dat~1, family=WEI)
Run the code above in your browser using DataLab