Learn R Programming

distr6 (version 1.3.6)

Weibull: Weibull Distribution Class

Description

Mathematical and statistical functions for the Weibull distribution, which is commonly used in survival analysis as it satisfies both PH and AFT requirements.

Value

Returns an R6 object inheriting from class SDistribution.

Constructor

Weibull$new(shape = 1, scale = 1, altscale = NULL, decorators = NULL, verbose = FALSE)

Constructor Arguments

Argument Type Details
shape numeric shape parameter.
scale numeric scale parameter.
altscale numeric alternative scale parameter.

decorators Decorator decorators to add functionality. See details.

Constructor Details

The Weibull distribution is parameterised with shape, scale, and altscale as positive numerics.

Public Variables

Variable Return
name Name of distribution.
short_name Id of distribution.
description Brief description of distribution.

Public Methods

Accessor Methods Link
decorators decorators
traits traits
valueSupport valueSupport
variateForm variateForm
type type
properties properties
support support
symmetry symmetry
sup sup
inf inf
dmax dmax
dmin dmin
skewnessType skewnessType
kurtosisType kurtosisType

Statistical Methods Link pdf(x1, ..., log = FALSE, simplify = TRUE) pdf cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdf quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution rand(n, simplify = TRUE) rand mean() mean.Distribution variance() variance stdev() stdev prec() prec cor() cor skewness() skewness kurtosis(excess = TRUE) kurtosis entropy(base = 2) entropy mgf(t) mgf cf(t) cf pgf(z) pgf median() median.Distribution iqr() iqr mode(which = "all") mode

Parameter Methods Link parameters(id) parameters getParameterValue(id, error = "warn") getParameterValue setParameterValue(..., lst = NULL, error = "warn") setParameterValue

Validation Methods Link liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport liesInType(x, all = TRUE, bound = FALSE) liesInType

Representation Methods Link strprint(n = 2) strprint print(n = 2) print summary(full = T) summary.Distribution

Details

The Weibull distribution parameterised with shape, \(\alpha\), and scale, \(\beta\), is defined by the pdf, $$f(x) = (\alpha/\beta)(x/\beta)^{\alpha-1}exp(-x/\beta)^\alpha$$ for \(\alpha, \beta > 0\).

The distribution is supported on the Positive Reals.

mgf and cf are omitted as no closed form analytic expression could be found, decorate with CoreStatistics for numerical results.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

listDistributions for all available distributions. Frechet and Gumbel for other special cases of the generalized extreme value distribution. CoreStatistics for numerical results.

Examples

Run this code
# NOT RUN {
# Different parameterisations
Weibull$new(shape = 1, scale = 2)
Weibull$new(shape = 2, altscale = 2)

x <- Weibull$new(shape = 2, scale = 3)

# Update parameters
x$setParameterValue(scale = 1)
x$parameters()

# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)

# Statistics
x$mean()
x$variance()

summary(x)

# }

Run the code above in your browser using DataLab