Learn R Programming

gamlss.dist (version 4.3-4)

ZIP: Zero inflated poisson distribution for fitting a GAMLSS model

Description

The function ZIP defines the zero inflated Poisson distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dZIP, pZIP, qZIP and rZIP define the density, distribution function, quantile function and random generation for the inflated poisson, ZIP(), distribution.

Usage

ZIP(mu.link = "log", sigma.link = "logit")
dZIP(x, mu = 5, sigma = 0.1, log = FALSE)
pZIP(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZIP(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZIP(n, mu = 5, sigma = 0.1)

Arguments

mu.link
defines the mu.link, with "log" link as the default for the mu parameter
sigma.link
defines the sigma.link, with "logit" link as the default for the sigma parameter which in this case is the probability at zero. Other links are "probit" and "cloglog"'(complementary log-log)
x
vector of (non-negative integer) quantiles
mu
vector of positive means
sigma
vector of probabilities at zero
p
vector of probabilities
q
vector of quantiles
n
number of random values to return
log, log.p
logical; if TRUE, probabilities p are given as log(p)
lower.tail
logical; if TRUE (default), probabilities are P[X <= x],="" otherwise,="" p[x=""> x]

Value

  • returns a gamlss.family object which can be used to fit a zero inflated poisson distribution in the gamlss() function.

Details

Let $Y=0$ with probability $\sigma$ and $Y \sim Po(\mu)$ with probability $(1-\sigma)$ the Y has a Zero inflated Poisson Distribution given by

$$f(y)=\sigma +(1-\sigma)e^{-\mu}$$ if (y=0) $$f(y)=(1-\sigma)\frac{e^{-\mu} \mu^y}{y!}$$ if (y>0) for $y=0,1,...,$.

References

Lambert, D. (1992), Zero-inflated Poisson Regression with an application to defects in Manufacturing, Technometrics, 34, pp 1-14.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

gamlss.family, PO, ZIP2

Examples

Run this code
ZIP()# gives information about the default links for the normal distribution
# creating data and plotting them 
dat<-rZIP(1000, mu=5, sigma=.1)
r <- barplot(table(dat), col='lightblue')
# library(gamlss)
# fit the distribution 
# mod1<-gamlss(dat~1, family=ZIP)# fits a constant for mu and sigma 
# fitted(mod1)[1]
# fitted(mod1,"sigma")[1]

Run the code above in your browser using DataLab