# NOT RUN {
set.seed(311)
pheno <- data.frame(Yield = rnorm(10,200,5),Height=rnorm(10,100,1))
rownames(pheno) <- letters[1:10]
geno <- matrix(sample(c("A","A/B","B",NA),size=120,replace=TRUE,
prob=c(0.6,0.2,0.1,0.1)),nrow=10)
rownames(geno) <- letters[1:10]
colnames(geno) <- paste("M",1:12,sep="")
# one SNP is not mapped (M5)
map <- data.frame(chr=rep(1:3,each=4),pos=rep(1:12))
map <- map[-5,]
rownames(map) <- paste("M",c(1:4,6:12),sep="")
gp <- create.gpData(pheno=pheno,geno=geno,map=map)
summary(gp)
#new phenotypic data
newPheno <- data.frame(Yield=200,Height=100,row.names="newLine")
# simulating genotypic data
newGeno <- matrix(sample(c("A","A/B","B"),ncol(gp$geno),replace=TRUE),nrow=1)
rownames(newGeno) <- "newLine"
# new pedigree
newPedigree <- create.pedigree(ID="newLine",Par1=0,Par2=0,gener=0)
gp2 <- add.individuals(gp,pheno=newPheno,geno=newGeno,pedigree=newPedigree)
# }
# NOT RUN {
# add one new DH line to maize data
library(synbreedData)
data(maize)
newDHpheno <- data.frame(Trait=1000,row.names="newDH")
# simulating genotypic data
newDHgeno <- matrix(sample(c(0,1),ncol(maize$geno),replace=TRUE),nrow=1)
rownames(newDHgeno) <- "newDH"
# new pedigree
newDHpedigree <- create.pedigree(ID="newDH",Par1=0,Par2=0,gener=0)
# new covar information
newDHcovar <- data.frame(family=NA,DH=1,tbv=1000,row.names="newDH")
# add individual
maize2 <- add.individuals(maize,newDHpheno,newDHgeno,newDHpedigree,newDHcovar)
summary(maize2)
# }
Run the code above in your browser using DataLab