## Building the input data ####
Names <- c("Replicates", "Glucose", "Fructose 6-phosphate",
"Glyceraldehyde 3-phosphate", "Glycerone phosphate", "3-Phospho-D-glycerate")
Sample1 <- c("cond1", 0.8, 0.3, 1.1, 1.2, 0.2)
Sample2 <- c("cond1", 0.6, 0.2, 1.5, 1.5, 0.3)
Sample3 <- c("cond1", 0.7, 0.4, 1.2, 1.3, 0.5)
Sample4 <- c("cond2", 1.2, 0.6, NA, 0.2, 1.1)
Sample5 <- c("cond2", 1.1, 0.7, NA, 0.3, 1.0)
Sample6 <- c("cond2", 1.5, 0.7, NA, 0.2, 0.9)
metabolomicsData <- data.frame(cbind(Names, Sample1, Sample2, Sample3, Sample4,
Sample5, Sample6), stringsAsFactors = FALSE)
## Building the keggCodes library ####
kegg <- c("C00031", "C05345", "C00118", "C00111", "C00197", "absent")
Name <- c("Glucose", "Fructose 6-phosphate", "Glyceraldehyde 3-phosphate",
"Glycerone phosphate", "3-Phospho-D-glycerate", "Citrate")
keggLibrary <- data.frame(cbind(kegg, Name), stringsAsFactors = FALSE)
### Applying addKeggCodes ####
papiData <- addKeggCodes(metabolomicsData, keggLibrary, save = FALSE, addCodes = FALSE)
Run the code above in your browser using DataLab