# Define the factors
x1 <- make.mtkFactor(name="x1", distribName="unif",
distribPara=list(min=-pi, max=pi))
x2 <- make.mtkFactor(name="x2", distribName="unif",
distribPara=list(min=-pi, max=pi))
x3 <- make.mtkFactor(name="x3", distribName="unif",
distribPara=list(min=-pi, max=pi))
ishi.factors <- mtkExpFactors(list(x1,x2,x3))
# Create a workflow to manager the processes used for the analysis task
ishiReg <- mtkExpWorkflow(expFactors=ishi.factors)
# Create a designer to generate the experiments design and
# put the designer under control of the workflow
designer <- mtkNativeDesigner("BasicMonteCarlo",
information=list(size=20))
addProcess(ishiReg, designer, name="design")
# Creates an evaluator and add it to the workflow
model <- mtkNativeEvaluator("Ishigami" )
addProcess(ishiReg, model, name="evaluate")
# Create a analyser and add it to the workflow
analyser <- mtkNativeAnalyser("Regression" )
addProcess(ishiReg, analyser, name="analyze")
# Run the workflow and reports the results
run(ishiReg)
summary(ishiReg)
Run the code above in your browser using DataLab