#Read Salmonella Agona data
data("salmonella.agona")
#Do surveillance for the last 100 weeks.
n <- length(salmonella.agona$observed)
#Set control parameters.
control <- list(b=4,w=3,range=(n-100):n,reweight=TRUE, verbose=FALSE,alpha=0.01)
res <- algo.farrington(salmonella.agona,control=control)
#Plot the result.
plot(res,disease="Salmonella Agona",method="Farrington")
#Generate random data and convert into sts object
set.seed(123)
x <- matrix(rpois(1000,lambda=1),ncol=1)
sts <- new("sts", observed=x, epoch=1:nrow(x), state=x*0, freq=52)
#Compare timing of the two possible fitters for algo.farrington (here using S4)
system.time( sts1 <- farrington(sts, control=list(range=c(500:1000),
fitFun="algo.farrington.fitGLM.fast")))
system.time( sts2 <- farrington(sts, control=list(range=c(500:1000),
fitFun="algo.farrington.fitGLM")))
#Check if results are the same
sum(upperbound(sts1) - upperbound(sts2))
Run the code above in your browser using DataLab