## Two-Way Anova
mod <- lm(conformity ~ fcategory*partner.status, data=Moore, 
  contrasts=list(fcategory=contr.sum, partner.status=contr.sum))
Anova(mod)
## Anova Table (Type II tests)
##
## Response: conformity
##                         Sum Sq Df F value   Pr(>F)
## fcategory                 11.61  2  0.2770 0.759564
## partner.status           212.21  1 10.1207 0.002874
## fcategory:partner.status 175.49  2  4.1846 0.022572
## Residuals                817.76 39                 
Anova(mod, type="III")
## Anova Table (Type III tests)
##
## Response: conformity
##                          Sum Sq Df  F value    Pr(>F)
## (Intercept)              5752.8  1 274.3592 < 2.2e-16
## fcategory                  36.0  2   0.8589  0.431492
## partner.status            239.6  1  11.4250  0.001657
## fcategory:partner.status  175.5  2   4.1846  0.022572
## Residuals                 817.8 39
## One-Way MANOVA
## See ?Pottery for a description of the data set used in this example.
summary(Anova(lm(cbind(Al, Fe, Mg, Ca, Na) ~ Site, data=Pottery)))
## Type II MANOVA Tests:
## 
## Sum of squares and products for error:
##            Al          Fe          Mg          Ca         Na
## Al 48.2881429  7.08007143  0.60801429  0.10647143 0.58895714
## Fe  7.0800714 10.95084571  0.52705714 -0.15519429 0.06675857
## Mg  0.6080143  0.52705714 15.42961143  0.43537714 0.02761571
## Ca  0.1064714 -0.15519429  0.43537714  0.05148571 0.01007857
## Na  0.5889571  0.06675857  0.02761571  0.01007857 0.19929286
## 
## ------------------------------------------
##  
## Term: Site 
## 
## Sum of squares and products for the hypothesis:
##             Al          Fe          Mg         Ca         Na
## Al  175.610319 -149.295533 -130.809707 -5.8891637 -5.3722648
## Fe -149.295533  134.221616  117.745035  4.8217866  5.3259491
## Mg -130.809707  117.745035  103.350527  4.2091613  4.7105458
## Ca   -5.889164    4.821787    4.209161  0.2047027  0.1547830
## Na   -5.372265    5.325949    4.710546  0.1547830  0.2582456
## 
## Multivariate Tests: Site
##                        Df test stat  approx F   num Df   den Df     Pr(>F)    
## Pillai            3.00000   1.55394   4.29839 15.00000 60.00000 2.4129e-05 ***
## Wilks             3.00000   0.01230  13.08854 15.00000 50.09147 1.8404e-12 ***
## Hotelling-Lawley  3.00000  35.43875  39.37639 15.00000 50.00000 < 2.22e-16 ***
## Roy               3.00000  34.16111 136.64446  5.00000 20.00000 9.4435e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## MANOVA for a randomized block design (example courtesy of Michael Friendly:
##  See ?Soils for description of the data set)
soils.mod <- lm(cbind(pH,N,Dens,P,Ca,Mg,K,Na,Conduc) ~ Block + Contour*Depth, 
    data=Soils)
Manova(soils.mod)
## Type II MANOVA Tests: Pillai test statistic
##                Df test stat approx F num Df den Df    Pr(>F)    
## Block           3    1.6758   3.7965     27     81 1.777e-06 ***
## Contour         2    1.3386   5.8468     18     52 2.730e-07 ***
## Depth           3    1.7951   4.4697     27     81 8.777e-08 ***
## Contour:Depth   6    1.2351   0.8640     54    180    0.7311    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## a multivariate linear model for repeated-measures data
## See ?OBrienKaiser for a description of the data set used in this example.
phase <- factor(rep(c("pretest", "posttest", "followup"), c(5, 5, 5)),
    levels=c("pretest", "posttest", "followup"))
hour <- ordered(rep(1:5, 3))
idata <- data.frame(phase, hour)
idata
##       phase hour
## 1   pretest    1
## 2   pretest    2
## 3   pretest    3
## 4   pretest    4
## 5   pretest    5
## 6  posttest    1
## 7  posttest    2
## 8  posttest    3
## 9  posttest    4
## 10 posttest    5
## 11 followup    1
## 12 followup    2
## 13 followup    3
## 14 followup    4
## 15 followup    5
mod.ok <- lm(cbind(pre.1, pre.2, pre.3, pre.4, pre.5, 
                     post.1, post.2, post.3, post.4, post.5, 
                     fup.1, fup.2, fup.3, fup.4, fup.5) ~  treatment*gender, 
                data=OBrienKaiser)
(av.ok <- Anova(mod.ok, idata=idata, idesign=~phase*hour)) 
## Type II Repeated Measures MANOVA Tests: Pillai test statistic
##                             Df test stat approx F num Df den Df    Pr(>F)    
## treatment                    2    0.4809   4.6323      2     10 0.0376868 *  
## gender                       1    0.2036   2.5558      1     10 0.1409735    
## treatment:gender             2    0.3635   2.8555      2     10 0.1044692    
## phase                        1    0.8505  25.6053      2      9 0.0001930 ***
## treatment:phase              2    0.6852   2.6056      4     20 0.0667354 .  
## gender:phase                 1    0.0431   0.2029      2      9 0.8199968    
## treatment:gender:phase       2    0.3106   0.9193      4     20 0.4721498    
## hour                         1    0.9347  25.0401      4      7 0.0003043 ***
## treatment:hour               2    0.3014   0.3549      8     16 0.9295212    
## gender:hour                  1    0.2927   0.7243      4      7 0.6023742    
## treatment:gender:hour        2    0.5702   0.7976      8     16 0.6131884    
## phase:hour                   1    0.5496   0.4576      8      3 0.8324517    
## treatment:phase:hour         2    0.6637   0.2483     16      8 0.9914415    
## gender:phase:hour            1    0.6950   0.8547      8      3 0.6202076    
## treatment:gender:phase:hour  2    0.7928   0.3283     16      8 0.9723693    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
summary(av.ok, multivariate=FALSE)
## Univariate Type II Repeated-Measures ANOVA Assuming Sphericity
## 
##                                  SS num Df Error SS den Df       F    Pr(>F)
## treatment                   211.286      2  228.056     10  4.6323  0.037687
## gender                       58.286      1  228.056     10  2.5558  0.140974
## treatment:gender            130.241      2  228.056     10  2.8555  0.104469
## phase                       167.500      2   80.278     20 20.8651 1.274e-05
## treatment:phase              78.668      4   80.278     20  4.8997  0.006426
## gender:phase                  1.668      2   80.278     20  0.2078  0.814130
## treatment:gender:phase       10.221      4   80.278     20  0.6366  0.642369
## hour                        106.292      4   62.500     40 17.0067 3.191e-08
## treatment:hour                1.161      8   62.500     40  0.0929  0.999257
## gender:hour                   2.559      4   62.500     40  0.4094  0.800772
## treatment:gender:hour         7.755      8   62.500     40  0.6204  0.755484
## phase:hour                   11.083      8   96.167     80  1.1525  0.338317
## treatment:phase:hour          6.262     16   96.167     80  0.3256  0.992814
## gender:phase:hour             6.636      8   96.167     80  0.6900  0.699124
## treatment:gender:phase:hour  14.155     16   96.167     80  0.7359  0.749562
## 
## treatment                   *
## gender
## treatment:gender
## phase                       ***
## treatment:phase             **
## gender:phase
## treatment:gender:phase
## hour                        ***
## treatment:hour
## gender:hour
## treatment:gender:hour
## phase:hour
## treatment:phase:hour
## gender:phase:hour
## treatment:gender:phase:hour
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Mauchly Tests for Sphericity
## 
##                             Test statistic p-value
## phase                              0.74927 0.27282
## treatment:phase                    0.74927 0.27282
## gender:phase                       0.74927 0.27282
## treatment:gender:phase             0.74927 0.27282
## hour                               0.06607 0.00760
## treatment:hour                     0.06607 0.00760
## gender:hour                        0.06607 0.00760
## treatment:gender:hour              0.06607 0.00760
## phase:hour                         0.00478 0.44939
## treatment:phase:hour               0.00478 0.44939
## gender:phase:hour                  0.00478 0.44939
## treatment:gender:phase:hour        0.00478 0.44939
## 
## 
## Greenhouse-Geisser and Huynh-Feldt Corrections
##  for Departure from Sphericity
## 
##                              GG eps Pr(>F[GG])
## phase                       0.79953  7.323e-05 ***
## treatment:phase             0.79953    0.01223 *
## gender:phase                0.79953    0.76616
## treatment:gender:phase      0.79953    0.61162
## hour                        0.46028  8.741e-05 ***
## treatment:hour              0.46028    0.97879
## gender:hour                 0.46028    0.65346
## treatment:gender:hour       0.46028    0.64136
## phase:hour                  0.44950    0.34573
## treatment:phase:hour        0.44950    0.94019
## gender:phase:hour           0.44950    0.58903
## treatment:gender:phase:hour 0.44950    0.64634
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                              HF eps Pr(>F[HF])
## phase                       0.92786  2.388e-05 ***
## treatment:phase             0.92786    0.00809 **
## gender:phase                0.92786    0.79845
## treatment:gender:phase      0.92786    0.63200
## hour                        0.55928  2.014e-05 ***
## treatment:hour              0.55928    0.98877
## gender:hour                 0.55928    0.69115
## treatment:gender:hour       0.55928    0.66930
## phase:hour                  0.73306    0.34405
## treatment:phase:hour        0.73306    0.98047
## gender:phase:hour           0.73306    0.65524
## treatment:gender:phase:hour 0.73306    0.70801
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1Run the code above in your browser using DataLab