## Example: parametrized 3D-curve with t in 0..3*pi
f <- function(t) c(sin(2*t), cos(t), t)
arclength(f, 0, 3*pi)
# $length: 17.22203 # true length 17.222032...
## Example: length of the sine curve
f <- function(t) c(t, sin(t))
arclength(f, 0, pi) # true length 3.82019...
## Example: oscillating 1-dimensional function (from 0 to 5)
f <- function(x) x * cos(0.1*exp(x)) * sin(0.1*pi*exp(x))
F <- function(t) c(t, f(t))
L <- arclength(F, 0, 5, tol = 1e-12, nmax = 25)
print(L$length, digits = 16)
# [1] 82.81020372882217 # true length 82.810203728822172...
# Split this computation in 10 steps (run time drops from 2 to 0.2 secs)
L <- 0
for (i in 1:10)
L <- L + arclength(F, (i-1)*0.5, i*0.5, tol = 1e-10)$length
print(L, digits = 16)
# [1] 82.81020372882216
# Alternative calculation of arc length
f1 <- function(x) sqrt(1 + complexstep(f, x)^2)
L1 <- quadgk(f1, 0, 5, tol = 1e-14)
print(L1, digits = 16)
# [1] 82.81020372882216
Run the code above in your browser using DataLab