## Not run:
# # Subset of data from ApoAI case study in Limma User's Guide
# RG <- backgroundCorrect(RG, method="normexp")
# MA <- normalizeWithinArrays(RG)
# targets <- data.frame(Cy3=I(rep("Pool",6)),Cy5=I(c("WT","WT","WT","KO","KO","KO")))
# design <- modelMatrix(targets, ref="Pool")
# arrayw <- arrayWeightsSimple(MA, design)
# fit <- lmFit(MA, design, weights=arrayw)
# fit2 <- contrasts.fit(fit, contrasts=c(-1,1))
# fit2 <- eBayes(fit2)
# # Use of array weights increases the significance of the top genes
# topTable(fit2)
# ## End(Not run)
Run the code above in your browser using DataLab