Learn R Programming

riskRegression (version 2020.02.05)

autoplot.ate: Plot Average Risks

Description

Plot average risks.

Usage

# S3 method for ate
autoplot(
  object,
  estimator = object$estimator[1],
  ci = FALSE,
  band = FALSE,
  plot = TRUE,
  digits = 2,
  alpha = NA,
  ...
)

Arguments

object

Object obtained with the function ate.

estimator

[character] The type of estimator relative to which the risks should be displayed.

ci

[logical] If TRUE display the confidence intervals for the average risks.

band

[logical] If TRUE display the confidence bands for the average risks.

plot

[logical] Should the graphic be plotted.

digits

[integer, >0] Number of decimal places.

alpha

[numeric, 0-1] Transparency of the confidence bands. Argument passed to ggplot2::geom_ribbon.

...

not used. Only for compatibility with the plot method.

See Also

ate to compute average risks.

Examples

Run this code
# NOT RUN {
library(survival)
library(rms)
library(ggplot2)
#### simulate data ####
n <- 1e2
set.seed(10)
dtS <- sampleData(n,outcome="survival")


#### Cox model ####
fit <- cph(formula = Surv(time,event)~ X1+X2,data=dtS,y=TRUE,x=TRUE)

#### Average treatment effect ####
seqTimes <- sort(unique(fit$y[,1]))
seqTimes5 <- seqTimes[seqTimes>5 & seqTimes<10]
ateFit <- ate(fit, data = dtS, treatment = "X1", contrasts = NULL,
              times = seqTimes, B = 0, band = TRUE, nsim.band = 500, y = TRUE,
              mc.cores=1)

#### display #### 
ggplot2::autoplot(ateFit)

outGG <- autoplot(ateFit, band = TRUE, ci = TRUE, alpha = 0.1)
dd <- as.data.frame(outGG$data[treatment == 0])
outGG$plot + facet_wrap(~treatment, labeller = label_both)
# }

Run the code above in your browser using DataLab