# NOT RUN {
data(FBC07.dat)
Y <- FBC07.dat[1:150,"Y.2"]
coords <- as.matrix(FBC07.dat[1:150,c("coord.X", "coord.Y")])
n.samples <- 500
n = length(Y)
p = 1
phi <- 0.15
nu <- 0.5
beta.prior.mean <- as.matrix(rep(0, times=p))
beta.prior.precision <- matrix(0, nrow=p, ncol=p)
alpha <- 5/5
sigma.sq.prior.shape <- 2.0
sigma.sq.prior.rate <- 5.0
##############################
##Simple linear model with
##the default exponential
##spatial decay function
##############################
set.seed(1)
m.1 <- bayesGeostatExact(Y~1, n.samples=n.samples,
beta.prior.mean=beta.prior.mean,
beta.prior.precision=beta.prior.precision,
coords=coords, phi=phi, alpha=alpha,
sigma.sq.prior.shape=sigma.sq.prior.shape,
sigma.sq.prior.rate=sigma.sq.prior.rate)
print(summary(m.1$p.samples))
##Requires MBA package to
##make surfaces
library(MBA)
par(mfrow=c(1,2))
obs.surf <-
mba.surf(cbind(coords, Y), no.X=100, no.Y=100, extend=T)$xyz.est
image(obs.surf, xaxs = "r", yaxs = "r", main="Observed response")
points(coords)
contour(obs.surf, add=T)
w.hat <- rowMeans(m.1$sp.effects)
w.surf <-
mba.surf(cbind(coords, w.hat), no.X=100, no.Y=100, extend=T)$xyz.est
image(w.surf, xaxs = "r", yaxs = "r", main="Estimated random effects")
points(coords)
contour(w.surf, add=T)
##############################
##Simple linear model with
##the matern spatial decay
##function. Note, nu=0.5 so
##should produce the same
##estimates as m.1
##############################
set.seed(1)
m.2 <- bayesGeostatExact(Y~1, n.samples=n.samples,
beta.prior.mean=beta.prior.mean,
beta.prior.precision=beta.prior.precision,
coords=coords, cov.model="matern",
phi=phi, nu=nu, alpha=alpha,
sigma.sq.prior.shape=sigma.sq.prior.shape,
sigma.sq.prior.rate=sigma.sq.prior.rate)
print(summary(m.2$p.samples))
##############################
##This time with the
##spherical just for fun
##############################
m.3 <- bayesGeostatExact(Y~1, n.samples=n.samples,
beta.prior.mean=beta.prior.mean,
beta.prior.precision=beta.prior.precision,
coords=coords, cov.model="spherical",
phi=phi, alpha=alpha,
sigma.sq.prior.shape=sigma.sq.prior.shape,
sigma.sq.prior.rate=sigma.sq.prior.rate)
print(summary(m.3$p.samples))
##############################
##Another example but this
##time with covariates
##############################
data(FORMGMT.dat)
n = nrow(FORMGMT.dat)
p = 5 ##an intercept an four covariates
n.samples <- 50
phi <- 0.0012
coords <- cbind(FORMGMT.dat$Longi, FORMGMT.dat$Lat)
coords <- coords*(pi/180)*6378
beta.prior.mean <- rep(0, times=p)
beta.prior.precision <- matrix(0, nrow=p, ncol=p)
alpha <- 1/1.5
sigma.sq.prior.shape <- 2.0
sigma.sq.prior.rate <- 10.0
m.4 <-
bayesGeostatExact(Y~X1+X2+X3+X4, data=FORMGMT.dat, n.samples=n.samples,
beta.prior.mean=beta.prior.mean,
beta.prior.precision=beta.prior.precision,
coords=coords, phi=phi, alpha=alpha,
sigma.sq.prior.shape=sigma.sq.prior.shape,
sigma.sq.prior.rate=sigma.sq.prior.rate)
print(summary(m.4$p.samples))
##Requires MBA package to
##make surfaces
library(MBA)
par(mfrow=c(1,2))
obs.surf <-
mba.surf(cbind(coords, resid(lm(Y~X1+X2+X3+X4, data=FORMGMT.dat))),
no.X=100, no.Y=100, extend=TRUE)$xyz.est
image(obs.surf, xaxs = "r", yaxs = "r", main="Observed response")
points(coords)
contour(obs.surf, add=T)
w.hat <- rowMeans(m.4$sp.effects)
w.surf <-
mba.surf(cbind(coords, w.hat), no.X=100, no.Y=100, extend=TRUE)$xyz.est
image(w.surf, xaxs = "r", yaxs = "r", main="Estimated random effects")
contour(w.surf, add=T)
points(coords, pch=1, cex=1)
# }
Run the code above in your browser using DataLab