
imp
function.bclust(x,rep.id=1:nrow(x),effect.family="gaussian",
var.select=TRUE,transformed.par,labels=NULL)
x
. This vector identifies replicates of a clustering type such that the total number of clustering types is max(rep.id)
. If nothing is declared the function
presupposes that the data are unreplicated, that is each row of x
is a clustering type.TRUE
for fitting models that define
spike-and-slab distribution in variable level and allows Bayesian variable selection.max(rep.id)
. The first element corresponds to the label of the type having the smallest integer value in rep.id
, the second element refers to
the label of the type having the second smallest integer in rep.id
, and so on.rep.id
.rep.id
hclust
object format.C
functions depending on the chosen
model. The C-stack of the system may overflow if you have a large
dataset. You may need to adjust the stack before running R
using your
operation system command line. If you use Linux, open a console and type
>
ulimit -s unlimited and then run R
in the same console. The Microsoft Windows users don't need to increase the stack size.We assumed a Bayesian linear model for clustering being
data(gaelle)
# unreplicated clustering
gaelle.bclust<-bclust(x=gaelle,
transformed.par=c(-1.84,-0.99,1.63,0.08,-0.16,-1.68))
par(mfrow=c(2,1))
plot(as.dendrogram(gaelle.bclust))
abline(h=gaelle.bclust$cut)
plot(gaelle.bclust$clust.number,gaelle.bclust$logposterior,
xlab="Number of clusters",ylab="Log posterior",type="b")
abline(h=max(gaelle.bclust$logposterior))
#replicated clustering
gaelle.id<-rep(1:14,c(3,rep(4,13)))
# first 3 rows replication of ColWT
# 4 replications for the others
gaelle.lab<-c("ColWT","d172","d263","isa2",
"sex4","dpe2","mex1","sex3","pgm","sex1",
"WsWT","tpt","RLDWT","ke103")
gaelle.bclust<-bclust(gaelle,rep.id=gaelle.id,labels=gaelle.lab,
transformed.par=c(-1.84,-0.99,1.63,0.08,-0.16,-1.68))
plot(as.dendrogram(gaelle.bclust))
abline(h=gaelle.bclust$cut)
plot(gaelle.bclust$clust.number,gaelle.bclust$logposterior,
xlab="Number of clusters",ylab="Log posterior",type="b")
abline(h=max(gaelle.bclust$logposterior))
Run the code above in your browser using DataLab