best.cis.eQTLs(smpack = "GGdata", rhs = ~1, folderstem = "cisScratch", radius = 50000, shortfac = 100, chrnames = as.character(1:22), smchrpref = "", gchrpref = "", schrpref = "ch", geneApply = lapply, geneannopk = "illuminaHumanv1.db", snpannopk = snplocsDefault(), smFilter = function(x) nsFilter(MAFfilter(x, lower = 0.05), var.cutoff = 0.97), nperm = 2, useME=FALSE, excludeRadius=NULL, exFilter=function(x)x, keepMapCache=FALSE, getDFFITS=FALSE, SSgen = GGBase::getSS)
All.cis.eQTLs(maxfdr = 0.05, inbestcis = NULL, smpack = "GGdata", rhs = ~1, folderstem = "cisScratch", radius = 50000, shortfac = 100, chrnames = as.character(1:22), smchrpref = "", gchrpref = "", schrpref = "ch", geneApply = lapply, geneannopk = "illuminaHumanv1.db", snpannopk = snplocsDefault(), smFilter4cis = function(x) nsFilter(MAFfilter(clipPCs(x, 1:10), lower = 0.05), var.cutoff = 0.85), smFilter4all = function(x) MAFfilter(clipPCs(x, 1:10), lower = 0.05), nperm = 2, excludeRadius=NULL, exFilter=function(x)x, SSgen = GGBase::getSS)
meta.best.cis.eQTLs(smpackvec = c("GGdata", "hmyriB36"), rhslist = list(~1, ~1), folderstem = "cisScratch", radius = 50000, shortfac = 100, chrnames = as.character(1:22), smchrpref = "", gchrpref = "", schrpref = "ch", geneApply = lapply, geneannopk = "illuminaHumanv1.db", snpannopk = snplocsDefault(), SMFilterList = list( function(x) nsFilter(MAFfilter(x, lower = 0.05), var.cutoff = 0.97), function(x) nsFilter(MAFfilter(x, lower = 0.05), var.cutoff = 0.97) ), exFilterList = list(function(x)x, function(x)x), nperm = 2, excludeRadius=NULL)
meta.All.cis.eQTLs(minchisq, smpackvec = c("GGdata", "hmyriB36"), rhslist = list(~1, ~1), folderstem = "cisScratch", radius = 50000, shortfac=100, chrnames = as.character(1:22), smchrpref = "", gchrpref = "", schrpref = "ch", geneApply = lapply, geneannopk = "illuminaHumanv1.db", snpannopk = snplocsDefault(), SMFilterList = list(function(x) nsFilter(MAFfilter(x, lower = 0.05), var.cutoff = 0.97), function(x) nsFilter(MAFfilter(x, lower = 0.05), var.cutoff = 0.97)), exFilterList = list(function(x) x, function(x) x), nperm = 2)
chromsUsed(x)
fdr(x)
fullreport(x, type, ...)
getAll(x)
getBest(x)
getCall(x)getSS
can be applied to extract smlSet-class instances
smpack values in a series of
best.cis.eQTLs calls, one per population for meta-analysissnp.rhs.tests to adjust GWAS tests for
each expression probe
rhs
in a series of best.cis.eQTLs calls, one per population for meta-analysisradius bases, and only SNP within these limits are
used for selecting best hits for the gene
chrnames into appropriate tokens for
indexing smlSet elements as collected from the
package named by parameter smpack
chrnames into appropriate tokens for
obtaining gene metadata; in future this may need to be a string
transformation function
chrnames into appropriate tokens for
use with snplocs for the SNP location information
package identified in snpannopack parameter below
lapply
getCisMap for additional possibilities concerning FDb.* complex token
values for newer annotation formats
smlSet-class
instance
smlSet-class
instance
All.cis.eQTLs. The process
of identifying ``best'' cis eQTL per probe leads to a probe-specific
FDR. In All.cis.eQTLs we enumerate all probes and all SNP
with FDR at most maxfdr, not just the best scoring
SNP per probe.All.cis.eQTLs. An instance
of mcwBestCis that can be used
to speed up the extraction of All.cis eQTL.All.cis.eQTLs.
A function accepting and returning an smlSet instance.
When
inbestcis parameter is NULL, this filter will be used
for identifying the best SNP per probe.All.cis.eQTLs. A function
accepting and returning an smlSet instance.
This filter will be used
for identifying the best SNP per probe. This filter
should not affect the number of probes.mcwBestCismcwBestCis object will include an environment
loaded with chromosome-specific lists of maps from genes to cis SNP names;
if FALSE, the mapCache environment returned will be empty -- NB, this
feature has been found to add too much volume to returned
objects and is suspended...getSS; see Detailssmpackvec to be passed to
getSS; see DetailsmcwBestCis
geneApply can be set to parallel::mclapply, for example,
in a multicore context.mcwBestCis stands for 'multi-chromosome-wide best cis'
eQTL report container.
It is possible that the filtering processes should be broken into genotype filtering and expression probe filtering.
fdr(x) will return a numeric vector of
plug-in FDR estimates corresponding to probe:association tests
as ordered in the fullreport of a *Cis container.
More metadata should be attached to the output of this
function.
exFilter may seem redundant with smFilter, but
its existence allows simpler management of multitissue
expression archives (which may have several records per individual)
with germ line genotype data (which will have only one record
per individual). In this setting, use exFilter to select records for the tissue
of interest; this will occur early in the smlSet generation process.
getClass("mcwBestCis")
## Not run:
# best.cis.eQTLs(chrnames="20")
# ## End(Not run)
Run the code above in your browser using DataLab