# Example 1
betabindat = data.frame(N = 10, mu = 0.5, rho = 0.8)
betabindat = transform(betabindat,
y = rbetabin(n=100, size=N, prob=mu, rho=rho))
fit = vglm(cbind(y,N-y) ~ 1, betabinomial, betabindat, trace=TRUE)
coef(fit, matrix=TRUE)
Coef(fit)
head(cbind(fit@y, weights(fit, type="prior")))
# Example 2
fit = vglm(cbind(R,N-R)~1, betabinomial, lirat, trace=TRUE, subset=N>1)
coef(fit, matrix=TRUE)
Coef(fit)
t(fitted(fit))
t(fit@y)
t(weights(fit, type="prior"))
# Example 3, which is more complicated
lirat = transform(lirat, fgrp = factor(grp))
summary(lirat) # Only 5 litters in group 3
fit2 = vglm(cbind(R,N-R) ~ fgrp + hb, betabinomial(zero=2),
data=lirat, trace=TRUE, subset=N>1)
coef(fit2, matrix=TRUE)
with(lirat, plot(hb[N>1], fit2@misc$rho,
xlab="Hemoglobin", ylab="Estimated rho",
pch=as.character(grp[N>1]), col=grp[N>1]))
# cf. Figure 3 of Moore and Tsiatis (1991)
with(lirat, plot(hb, R/N, pch=as.character(grp), col=grp, las=1,
xlab="Hemoglobin level", ylab="Proportion Dead",
main="Fitted values (lines)"))
smalldf = with(lirat, lirat[N>1,])
for(gp in 1:4) {
xx = with(smalldf, hb[grp==gp])
yy = with(smalldf, fitted(fit2)[grp==gp])
ooo = order(xx)
lines(xx[ooo], yy[ooo], col=gp)
}
Run the code above in your browser using DataLab