# NOT RUN {
# Example 1
N <- 10; s1 <- exp(1); s2 <- exp(2)
y <- rbetabinom.ab(n = 100, size = N, shape1 = s1, shape2 = s2)
fit <- vglm(cbind(y, N-y) ~ 1, betabinomialff, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
head(fit@misc$rho) # The correlation parameter
head(cbind(depvar(fit), weights(fit, type = "prior")))
# Example 2
fit <- vglm(cbind(R, N-R) ~ 1, betabinomialff, data = lirat,
trace = TRUE, subset = N > 1)
coef(fit, matrix = TRUE)
Coef(fit)
fit@misc$rho # The correlation parameter
t(fitted(fit))
t(depvar(fit))
t(weights(fit, type = "prior"))
# A "loglink" link for the 2 shape parameters is a logistic regression:
all.equal(c(fitted(fit)),
as.vector(logitlink(predict(fit)[, 1] -
predict(fit)[, 2], inverse = TRUE)))
# Example 3, which is more complicated
lirat <- transform(lirat, fgrp = factor(grp))
summary(lirat) # Only 5 litters in group 3
fit2 <- vglm(cbind(R, N-R) ~ fgrp + hb, betabinomialff(zero = 2),
data = lirat, trace = TRUE, subset = N > 1)
coef(fit2, matrix = TRUE)
coef(fit2, matrix = TRUE)[, 1] -
coef(fit2, matrix = TRUE)[, 2] # logitlink(p)
# }
# NOT RUN {
with(lirat, plot(hb[N > 1], fit2@misc$rho,
xlab = "Hemoglobin", ylab = "Estimated rho",
pch = as.character(grp[N > 1]), col = grp[N > 1]))
# }
# NOT RUN {
# cf. Figure 3 of Moore and Tsiatis (1991)
with(lirat, plot(hb, R / N, pch = as.character(grp), col = grp, las = 1,
xlab = "Hemoglobin level", ylab = "Proportion Dead",
main = "Fitted values (lines)"))
smalldf <- with(lirat, lirat[N > 1, ])
for (gp in 1:4) {
xx <- with(smalldf, hb[grp == gp])
yy <- with(smalldf, fitted(fit2)[grp == gp])
ooo <- order(xx)
lines(xx[ooo], yy[ooo], col = gp)
}
# }
Run the code above in your browser using DataLab