Estimates the four parameters of the bivariate logistic distribution by maximum likelihood estimation.
bilogistic(llocation = "identitylink", lscale = "loge",
iloc1 = NULL, iscale1 = NULL, iloc2 = NULL, iscale2 = NULL,
imethod = 1, zero = NULL)
Link function applied to both location parameters
\(l_1\) and \(l_2\).
See Links
for more choices.
Parameter link function applied to both
(positive) scale parameters \(s_1\) and \(s_2\).
See Links
for more choices.
Initial values for the location parameters.
By default, initial values are chosen internally using
imethod
. Assigning values here will override
the argument imethod
.
Initial values for the scale parameters.
By default, initial values are chosen internally using
imethod
. Assigning values here will override
the argument imethod
.
An integer with value 1
or 2
which
specifies the initialization method. If failure to converge occurs
try the other value.
An integer-valued vector specifying which
linear/additive predictors are modelled as intercepts only.
The default is none of them.
If used, one can choose values from the set {1,2,3,4}.
See CommonVGAMffArguments
for more information.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
rrvglm
and vgam
.
The four-parameter bivariate logistic distribution has a density that can be written as $$f(y_1,y_2;l_1,s_1,l_2,s_2) = 2 \frac{\exp[-(y_1-l_1)/s_1 - (y_2-l_2)/s_2]}{ s_1 s_2 \left( 1 + \exp[-(y_1-l_1)/s_1] + \exp[-(y_2-l_2)/s_2] \right)^3}$$ where \(s_1>0\) and \(s_2>0\) are the scale parameters, and \(l_1\) and \(l_2\) are the location parameters. Each of the two responses are unbounded, i.e., \(-\infty<y_j<\infty\). The mean of \(Y_1\) is \(l_1\) etc. The fitted values are returned in a 2-column matrix. The cumulative distribution function is $$F(y_1,y_2;l_1,s_1,l_2,s_2) = \left( 1 + \exp[-(y_1-l_1)/s_1] + \exp[-(y_2-l_2)/s_2] \right)^{-1}$$ The marginal distribution of \(Y_1\) is $$P(Y_1 \leq y_1) = F(y_1;l_1,s_1) = \left( 1 + \exp[-(y_1-l_1)/s_1] \right)^{-1} .$$
By default, \(\eta_1=l_1\), \(\eta_2=\log(s_1)\), \(\eta_3=l_2\), \(\eta_4=\log(s_2)\) are the linear/additive predictors.
Gumbel, E. J. (1961) Bivariate logistic distributions. Journal of the American Statistical Association, 56, 335--349.
Castillo, E., Hadi, A. S., Balakrishnan, N. Sarabia, J. S. (2005) Extreme Value and Related Models with Applications in Engineering and Science, Hoboken, NJ, USA: Wiley-Interscience.
# NOT RUN {
ymat <- rbilogis(n <- 1000, loc1 = 5, loc2 = 7, scale2 = exp(1))
# }
# NOT RUN {
plot(ymat)
# }
# NOT RUN {
fit <- vglm(ymat ~ 1, fam = bilogistic, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
head(fitted(fit))
vcov(fit)
head(weights(fit, type = "work"))
summary(fit)
# }
Run the code above in your browser using DataLab