Learn R Programming

VGAM (version 1.1-5)

bistudentt: Bivariate Student-t Family Function

Description

Estimate the degrees of freedom and correlation parameters of the (bivariate) Student-t distribution by maximum likelihood estimation.

Usage

bistudentt(ldf = "logloglink", lrho = "rhobitlink",
           idf = NULL, irho = NULL, imethod = 1,
           parallel = FALSE, zero = "rho")

Arguments

ldf, lrho, idf, irho, imethod

Details at CommonVGAMffArguments. See Links for more link function choices.

parallel, zero

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm and vgam.

Warning

The working weight matrices have not been fully checked.

Details

The density function is $$f(y_1, y_2; \nu, \rho) = \frac{1}{2\pi\sqrt{1-\rho^2}} (1 + y_1^2 + y_2^2 - 2\rho y_1 y_2) / (\nu (1-\rho^2))^{(\nu+2)/2} $$ for \(-1 < \rho < 1\), and real \(y_1\) and \(y_2\).

This VGAM family function can handle multiple responses, for example, a six-column matrix where the first 2 columns is the first out of three responses, the next 2 columns being the next response, etc.

References

Schepsmeier, U. and Stober, J. (2014). Derivatives and Fisher information of bivariate copulas. Statistical Papers 55, 525--542.

See Also

dbistudentt, binormal, pt.

Examples

Run this code
# NOT RUN {
nn <- 1000
mydof <- logloglink(1, inverse = TRUE)
ymat <- cbind(rt(nn, df = mydof), rt(nn, df = mydof))
bdata <- data.frame(y1 = ymat[, 1], y2 = ymat[, 2],
                    y3 = ymat[, 1], y4 = ymat[, 2], x2 = runif(nn))
summary(bdata)
# }
# NOT RUN {
 plot(ymat, col = "blue") 
# }
# NOT RUN {
fit1 <- vglm(cbind(y1, y2, y3, y4) ~ 1,  # 2 responses, e.g., (y1,y2) is the 1st
             fam = bistudentt,  # crit = "coef",  # Sometimes a good idea
             data = bdata, trace = TRUE)

coef(fit1, matrix = TRUE)
Coef(fit1)
head(fitted(fit1))
summary(fit1)
# }

Run the code above in your browser using DataLab