Learn R Programming

tsensembler (version 0.1.0)

bm_gaussianprocess: Fit Gaussian Process models

Description

Learning a Gaussian Process model from training data. Parameter setting can vary in kernel and tolerance. See gausspr for a comprehensive description.

Usage

bm_gaussianprocess(form, data, lpars)

Arguments

form

formula

data

training data for building the predictive model

lpars

a list containing the learning parameters

Value

A list containing Gaussian Processes models

Details

Imports learning procedure from kernlab package.

See Also

other learning models: bm_mars; bm_ppr; bm_gbm; bm_glm; bm_cubist; bm_randomforest; bm_pls_pcr; bm_ffnn; bm_svr

Other base learning models: bm_cubist(), bm_ffnn(), bm_gbm(), bm_glm(), bm_mars(), bm_pls_pcr(), bm_ppr(), bm_randomforest(), bm_svr()