data(gaussian.test)
res = hc(gaussian.test)
fitted = bn.fit(res, gaussian.test)
coefficients(fitted)
# $A
# (Intercept)
# 1.007493
#
# $B
# (Intercept)
# 2.039499
#
# $C
# (Intercept) A B
# 2.001083 1.995901 1.999108
#
# $D
# (Intercept) B
# 5.995036 1.498395
#
# $E
# (Intercept)
# 3.493906
#
# $F
# (Intercept) A D E G
# -0.006047321 1.994853041 1.005636909 1.002577002 1.494373265
#
# $G
# (Intercept)
# 5.028076
#
coefficients(fitted$C)
# (Intercept) A B
# 2.001083 1.995901 1.999108
str(residuals(fitted))
# List of 7
# $ A: num [1:5000] 0.106 -1.255 0.847 -0.174 -0.519 ...
# $ B: num [1:5000] -0.107 9.295 0.993 1.818 2.473 ...
# $ C: num [1:5000] -1.01 0.183 -0.677 -0.153 -1.997 ...
# $ D: num [1:5000] -0.23 0.377 0.518 0.162 -0.22 ...
# $ E: num [1:5000] -2.612 3.546 0.341 -2.488 0.591 ...
# $ F: num [1:5000] -0.861 1.271 -0.262 -0.479 -0.782 ...
# $ G: num [1:5000] 4.1883 -1.3492 -2.6036 1.0574 0.0895 ...
data(learning.test)
res2 = hc(learning.test)
fitted2 = bn.fit(res2, learning.test)
coefficients(fitted2$E)
# , , F = a
#
# B
# E a b c
# a 0.1902 0.0126 0.0244
# b 0.0230 0.0110 0.0234
# c 0.0230 0.0376 0.1566
#
# , , F = b
#
# B
# E a b c
# a 0.0946 0.0166 0.0498
# b 0.1158 0.0192 0.1062
# c 0.0258 0.0166 0.0536
Run the code above in your browser using DataLab