# NOT RUN {
# Load and process data set
data(bmiData)
# define the negative 12 month change in BMI from baseline
y12 <- -100*(bmiData[,6L] - bmiData[,4L])/bmiData[,4L]
# define the negative 4 month change in BMI from baseline
y4 <- -100*(bmiData[,5L] - bmiData[,4L])/bmiData[,4L]
# reward for second stage
rewardSS <- y12 - y4
#### Second-stage regression
# Constant propensity model
moPropen <- buildModelObj(model = ~1,
solver.method = 'glm',
solver.args = list('family'='binomial'),
predict.method = 'predict.glm',
predict.args = list(type='response'))
fitSS <- bowl(moPropen = moPropen,
data = bmiData, reward = rewardSS, txName = 'A2',
regime = ~ parentBMI + month4BMI)
##Available methods
# Coefficients of the propensity score regression
coef(fitSS)
# Description of method used to obtain object
DTRstep(fitSS)
# Estimated value of the optimal treatment regime for training set
estimator(fitSS)
# Value object returned by propensity score regression method
fitObject(fitSS)
# Summary of optimization routine
optimObj(fitSS)
# Estimated optimal treatment for training data
optTx(fitSS)
# Estimated optimal treatment for new data
optTx(fitSS, bmiData)
# Plots if defined by propensity regression method
dev.new()
par(mfrow = c(2,4))
plot(fitSS)
plot(fitSS, suppress = TRUE)
# Value object returned by propensity score regression method
propen(fitSS)
# Parameter estimates for decision function
regimeCoef(fitSS)
# Show main results of method
show(fitSS)
# Show summary results of method
summary(fitSS)
#### First-stage regression
# Constant propensity model
fitFS <- bowl(moPropen = moPropen,
data = bmiData, reward = y4, txName = 'A1',
regime = ~ gender + parentBMI,
BOWLObj = fitSS)
# }
Run the code above in your browser using DataLab