Learn R Programming

compositions (version 2.0-8)

boxplot: Displaying compositions and amounts with box-plots

Description

For the different interpretations of amounts or compositional data, a different type of boxplot is feasible. Thus different boxplots are drawn.

Usage

# S3 method for acomp
boxplot(x,fak=NULL,...,
                         xlim=NULL,ylim=NULL,log=TRUE,
                         panel=vp.logboxplot,dots=!boxes,boxes=TRUE,
                          notch=FALSE,
                          plotMissings=TRUE,
                          mp=~simpleMissingSubplot(missingPlotRect,
                                                missingInfo,c("NM","TM",cn))
                          )
# S3 method for rcomp
boxplot(x,fak=NULL,...,
                         xlim=NULL,ylim=NULL,log=FALSE,
                         panel=vp.boxplot,dots=!boxes,boxes=TRUE,
                          notch=FALSE,
                          plotMissings=TRUE,
                          mp=~simpleMissingSubplot(missingPlotRect,
                                                missingInfo,c("NM","TM",cn)))
# S3 method for aplus
boxplot(x,fak=NULL,...,log=TRUE,
                          plotMissings=TRUE,
                          mp=~simpleMissingSubplot(missingPlotRect,
                                                   missingInfo,
                                                   names(missingInfo)))
# S3 method for rplus
boxplot(x,fak=NULL,...,ylim=NULL,log=FALSE,
                          plotMissings=TRUE,
                          mp=~simpleMissingSubplot(missingPlotRect,
                                                   missingInfo,
                                                   names(missingInfo)))
vp.boxplot(x,y,...,dots=FALSE,boxes=TRUE,xlim=NULL,ylim=NULL,log=FALSE,
                          notch=FALSE,plotMissings=TRUE,
                          mp=~simpleMissingSubplot(missingPlotRect,
                                                   missingInfo,c("NM","TM",cn)),
                          missingness=attr(y,"missingness") ) 
vp.logboxplot(x,y,...,dots=FALSE,boxes=TRUE,xlim,ylim,log=TRUE,notch=FALSE,
                          plotMissings=TRUE, 
                          mp=~simpleMissingSubplot(missingPlotRect,
                                                   missingInfo,c("NM","TM",cn)),
                          missingness=attr(y,"missingness"))

Arguments

x

a data set

fak

a factor to split the data set, not yet implemented in aplus and rplus

xlim

x-limits of the plot.

ylim

y-limits of the plot.

log

logical indicating whether ploting should be done on log scale

panel

the panel function to be used or a list of multiple panel functions

...

further graphical parameters

dots

a logical indicating whether the points should be drawn

boxes

a logical indicating whether the boxes should be drawn

y

used by pairs

notch

logical, should the boxes be notched?

plotMissings

Logical indicating that missings should be displayed.

mp

A formula providing a function call, which will be evaluated within each panel with missings to plot the missingness situation. The call can use the variables missingPlotRect, which provides a rectangle to plot the information to in a par("usr") like specification. In the rX is the current data

missingness

The missingness information as a result from missingType of the full data information the panels could base there missing plots on.

Author

K.Gerald v.d. Boogaart http://www.stat.boogaart.de

Details

boxplot.aplus and boxplot.rplus are wrappers of bxp, which just take into account the possible logarithmic scale of the data.

boxplot.acomp and boxplot.rcomp generate a matrix of box-plots, where each cell represents the difference between the row and column variables. Such difference is respectively computed as a log-ratio and a rest.

vp.boxplot and vp.logboxplot are only used as panel functions. They should not be directly called.

See Also

plot.acomp, qqnorm.acomp

Examples

Run this code
data(SimulatedAmounts)
boxplot(acomp(sa.lognormals))
boxplot(rcomp(sa.lognormals))
boxplot(aplus(sa.lognormals))
boxplot(rplus(sa.lognormals))
# And now with missing!!!
boxplot(acomp(sa.tnormals))

Run the code above in your browser using DataLab