For the different interpretations of amounts or compositional data, a different type of boxplot is feasible. Thus different boxplots are drawn.
# S3 method for acomp
boxplot(x,fak=NULL,...,
xlim=NULL,ylim=NULL,log=TRUE,
panel=vp.logboxplot,dots=!boxes,boxes=TRUE,
notch=FALSE,
plotMissings=TRUE,
mp=~simpleMissingSubplot(missingPlotRect,
missingInfo,c("NM","TM",cn))
)
# S3 method for rcomp
boxplot(x,fak=NULL,...,
xlim=NULL,ylim=NULL,log=FALSE,
panel=vp.boxplot,dots=!boxes,boxes=TRUE,
notch=FALSE,
plotMissings=TRUE,
mp=~simpleMissingSubplot(missingPlotRect,
missingInfo,c("NM","TM",cn)))
# S3 method for aplus
boxplot(x,fak=NULL,...,log=TRUE,
plotMissings=TRUE,
mp=~simpleMissingSubplot(missingPlotRect,
missingInfo,
names(missingInfo)))
# S3 method for rplus
boxplot(x,fak=NULL,...,ylim=NULL,log=FALSE,
plotMissings=TRUE,
mp=~simpleMissingSubplot(missingPlotRect,
missingInfo,
names(missingInfo)))
vp.boxplot(x,y,...,dots=FALSE,boxes=TRUE,xlim=NULL,ylim=NULL,log=FALSE,
notch=FALSE,plotMissings=TRUE,
mp=~simpleMissingSubplot(missingPlotRect,
missingInfo,c("NM","TM",cn)),
missingness=attr(y,"missingness") )
vp.logboxplot(x,y,...,dots=FALSE,boxes=TRUE,xlim,ylim,log=TRUE,notch=FALSE,
plotMissings=TRUE,
mp=~simpleMissingSubplot(missingPlotRect,
missingInfo,c("NM","TM",cn)),
missingness=attr(y,"missingness"))
a data set
a factor to split the data set, not yet implemented in aplus and rplus
x-limits of the plot.
y-limits of the plot.
logical indicating whether ploting should be done on log scale
the panel function to be used or a list of multiple panel functions
further graphical parameters
a logical indicating whether the points should be drawn
a logical indicating whether the boxes should be drawn
used by pairs
logical, should the boxes be notched?
Logical indicating that missings should be displayed.
A formula providing a function call, which will be evaluated
within each panel with missings to plot the missingness situation. The
call can use the variables missingPlotRect
, which provides a
rectangle to plot the information to in a par("usr") like
specification. In the rX
is the current data
The missingness information as a result from
missingType
of the full data information the panels could base there
missing plots on.
K.Gerald v.d. Boogaart http://www.stat.boogaart.de
boxplot.aplus
and boxplot.rplus
are wrappers of bxp
,
which just take into account the possible logarithmic scale of the data.
boxplot.acomp
and boxplot.rcomp
generate a matrix of box-plots, where
each cell represents the difference between the row and column variables. Such
difference is respectively computed as a log-ratio and a rest.
vp.boxplot
and vp.logboxplot
are only used as panel functions.
They should not be directly called.
plot.acomp
, qqnorm.acomp
data(SimulatedAmounts)
boxplot(acomp(sa.lognormals))
boxplot(rcomp(sa.lognormals))
boxplot(aplus(sa.lognormals))
boxplot(rplus(sa.lognormals))
# And now with missing!!!
boxplot(acomp(sa.tnormals))
Run the code above in your browser using DataLab