brentDekker(f, a, b, maxiter = 100, tol = .Machine$double.eps^0.5)
Arguments
f
function whose root is to be found.
a, b
left and right end points of an interval;
function values need to be of different sign at the endpoints.
maxiter
maximum number of iterations.
tol
relative tolerance.
Value
brentDekker returns a list with
rootlocation of the root.
f.rootfuntion value at the root.
f.callsnumber of function calls.
estim.precestimated relative precision.
Details
brentDekker implements a version of the Brent-Dekker algorithm,
a well known root finding algorithms for real, univariate, continuous
functions. The Brent-Dekker approach is a clever combination of secant
and bisection with quadratic interpolation.
References
Quarteroni, A., R. Sacco, and F. Saleri (2007). Numerical Mathematics.
Second Edition, Springer-Verlag, Berlin Heidelberg.