Learn R Programming

pracma (version 1.2.5)

broyden: Broyden's Method

Description

Broyden's method for the numerical solution of nonlinear systems of n equations in n variables.

Usage

broyden(Ffun, x0, maxiter = 20, tol = .Machine$double.eps^(1/2))

Arguments

Ffun
n functions of n variables.
x0
Numeric vector of length n.
maxiter
Maximum number of iterations.
tol
Tolerance, relative accuracy.

Value

  • List with components: zero the best root found so far, fnorm the square root of sum of squares of the values of f, and niter the number of iterations needed.

Details

F as a function must return a vector of length n, and accept an n-dim. vector or column vector as input.

Broyden's method computes the Jacobian and its inverse only at the first iteration, and does a rank-one update thereafter, applying the so-called Sherman-Morrison formula that computes the inverse of the sum of an invertible matrix A and the dyadic product, uv', of a column vector u and a row vector v'.

References

Quarteroni, A., R. Sacco, and F. Saleri (2007). Numerical Mathematics. Second Edition, Springer-Verlag, Berlin Heidelberg.

See Also

newtonsys

Examples

Run this code
##  Example from Quarteroni & Saleri
F1 <- function(x) c(x[1]^2 + x[2]^2 - 1, sin(pi*x[1]/2) + x[2]^3)
broyden(F1, x0 = c(1, 1))
# zero: 0.4760958 -0.8793934; fnorm: 9.092626e-09; niter: 13

F <- function(x) {
    x1 <- x[1]; x2 <- x[2]; x3 <- x[3]
    as.matrix(c(x1^2 + x2^2 + x3^2 - 1,
                x1^2 + x3^2 - 0.25,
                x1^2 + x2^2 - 4*x3), ncol = 1)
}
x0 <- as.matrix(c(1, 1, 1))
broyden(F, x0)
# zero: 0.4407629 0.8660254 0.2360680; fnorm: 1.34325e-08; niter: 8

##  Find the roots of the complex function sin(z)^2 + sqrt(z) - log(z)
F2 <- function(x) {
    z  <- x[1] + x[2]*1i
    fz <- sin(z)^2 + sqrt(z) - log(z)
    c(Re(fz), Im(fz))
}
broyden(F2, c(1, 1))
# zero   0.2555197 0.8948303 , i.e.  z0 = 0.2555 + 0.8948i
# fnorm  7.284374e-10
# niter  13

Run the code above in your browser using DataLab