# NOT RUN {
dat1 <- HolzingerSwineford1939
dat1$x5 <- ifelse(dat1$x1 <= quantile(dat1$x1, .3), NA, dat1$x5)
dat1$x9 <- ifelse(is.na(dat1$x5), NA, dat1$x9)
targetModel <- "
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
"
targetFit <- sem(targetModel, dat1, meanstructure = TRUE, std.lv = TRUE,
missing = "fiml", group = "school")
summary(targetFit, fit = TRUE, standardized = TRUE)
# The number of bootstrap samples should be much higher.
temp <- bsBootMiss(targetFit, transformation = 1, nBoot = 10, seed = 31415)
temp
summary(temp)
hist(temp)
hist(temp, printLegend = FALSE) # suppress the legend
## user can specify alpha level (default: alpha = 0.05), and the number of
## digits to display (default: nd = 2). Pass other arguments to hist(...),
## or a list of arguments to legend() via "legendArgs"
hist(temp, alpha = .01, nd = 3, xlab = "something else", breaks = 25,
legendArgs = list("bottomleft", box.lty = 2))
# }
Run the code above in your browser using DataLab