###load example data for two studies:
### see ?seqMetaExample
data(seqMetaExample)
####run on each cohort:
cohort1 <- prepScores(Z=Z1, y~1, SNPInfo=SNPInfo, data=pheno1)
cohort2 <- prepScores(Z=Z2, y~1, SNPInfo=SNPInfo, data=pheno2)
#### combine results:
out <- burdenMeta(cohort1, cohort2, SNPInfo = SNPInfo, mafRange=c(0,.01))
head(out)
## Not run:
# ##### Compare with analysis on full data set:
# bigZ <- matrix(NA,2*n,nrow(SNPInfo))
# colnames(bigZ) <- SNPInfo$Name
#
# for(gene in unique(SNPInfo$gene)) {
# snp.names <- SNPInfo$Name[SNPInfo$gene == gene]
# bigZ[1:n,SNPInfo$gene == gene][ , snp.names \%in\% colnames(Z1)] <-
# Z1[ , na.omit(match(snp.names,colnames(Z1)))]
# bigZ[(n+1):(2*n),SNPInfo$gene == gene][ , snp.names \%in\% colnames(Z2)] <-
# Z2[ , na.omit(match(snp.names,colnames(Z2)))]
# }
#
# pheno <- rbind(pheno1[, c("y","sex","bmi")],pheno2[,c("y","sex","bmi")])
# burden.p <- c(by(SNPInfo$Name, SNPInfo$gene, function(snp.names) {
# inds <- match(snp.names,colnames(bigZ)) burden <- rowSums(bigZ[,na.omit(inds)],na.rm=TRUE)
# mod <- lm(y~burden + gl(2,nrow(pheno1)),data=pheno)
# summary(mod)$coef[2,4]
# }))
#
# head(cbind(out$p,burden.p))
#
# #will be slightly different:
# plot(y=out$p,x=burden.p, ylab = "burden meta p-values", xlab = "complete data p-values")
# ## End(Not run)
Run the code above in your browser using DataLab