Learn R Programming

FitAR (version 1.94)

bxcx: Box-Cox Transformation and its Inverse

Description

Box-Cox or power transformation or its inverse. For $lambda!=0$, the Box-Cox transformation of x is $(x^lambda-1)/lambda$, whereas the regular power transformation is simply $x^lambda$. When $lambda=0$, it is log in both cases. The inverse of the Box-Cox and the power transform can also be obtained.

Usage

bxcx(x, lambda, InverseQ = FALSE, type = "BoxCox")

Arguments

x
a vector or time series
lambda
power transformation parameter
InverseQ
if TRUE, the inverse transformation is done
type
either "BoxCox" or "power"

Value

A vector or time series of the transformed data

References

Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations. Journal of Royal Statistical Society, Series B, vol. 26, pp. 211-246.

See Also

BoxCox

Examples

Run this code
#lambda=0.5
z<-AirPassengers; lambda<-0.5
y<-bxcx(z, lambda)
z2<-bxcx(y, lambda, InverseQ=TRUE)
sum(abs(z2-z))
#
z<-AirPassengers; lambda<-0.0
y<-bxcx(z, lambda)
z2<-bxcx(y, lambda, InverseQ=TRUE)
sum(abs(z2-z))

Run the code above in your browser using DataLab