## 1) Sampling a conditional Clayton copula given u_1
## Define the copula
tau <- 0.5
theta <- iTau(claytonCopula(), tau = tau)
d <- 2
cc <- claytonCopula(theta, dim = d)
n <- 1000
set.seed(271)
## A small u_1
u1 <- 0.05
U <- cCopula(cbind(u1, runif(n)), copula = cc, inverse = TRUE)
plot(U[,2], ylab = expression(U[2]))
## A large u_1
u1 <- 0.95
U <- cCopula(cbind(u1, runif(n)), copula = cc, inverse = TRUE)
plot(U[,2], ylab = expression(U[2]))
## 2) Sample via conditional distribution method and then apply the
## Rosenblatt transform
## Note: We choose the numerically more involved (and thus slower)
## Gumbel case here
## Define the copula
tau <- 0.5
theta <- iTau(gumbelCopula(), tau = tau)
d <- 5
gc <- gumbelCopula(theta, dim = d)
n <- 200
set.seed(271)
U. <- matrix(runif(n*d), ncol = d) # U(0,1)^d
## Transform to Gumbel sample via conditional distribution method
U <- cCopula(U., copula = gc, inverse = TRUE) # slow for ACs except Clayton
splom2(U) # scatter-plot matrix copula sample
## Rosenblatt transform back to U(0,1)^d (as a check)
U. <- cCopula(U, copula = gc)
splom2(U.) # U(0,1)^d again
## 3) cCopula() for elliptical copulas
tau <- 0.5
theta <- iTau(claytonCopula(), tau = tau)
d <- 5
cc <- claytonCopula(theta, dim = d)
set.seed(271)
n <- 1000
U <- rCopula(n, copula = cc)
X <- qnorm(U) # X now follows a meta-Clayton model with N(0,1) marginals
U <- pobs(X) # build pseudo-observations
fN <- fitCopula(normalCopula(dim = d), data = U) # fit a Gauss copula
U.RN <- cCopula(U, copula = fN@copula)
splom2(U.RN, cex = 0.2) # visible but not so clearly
f.t <- fitCopula(tCopula(dim = d), U)
tc <- f.t@copula
U.Rt <- cCopula(U, copula = tc) # transform with a fitted t copula
splom2(U.Rt, cex = 0.2) # still visible but not so clear
tol <- 1e-14
stopifnot(
all.equal(log(U.RN),
cCopula(U, copula = fN@copula, log = TRUE), tolerance = tol),
all.equal(log(U.Rt),
cCopula(U, copula = tc, log = TRUE), tolerance = tol),
TRUE)
Run the code above in your browser using DataLab