## Example (i) Dette et al. (2008), p. 1228, Table 2, line 5
## calculate optimal design for Emax model
mods <- list(emax = 25)
doses <- c(0, 18.75, 150)
fMod <- fullMod(mods, doses, base=0, maxEff=0.4)
fMod$emax[2] <- 0.6666667
weights <- 1 # just one model
des <- calcOptDesign(fMod, weights, doses, clinRel=0.2)
## now compare this design to equal allocations on
## 0, 10, 25, 50, 100, 150
doses2 <- c(0, 10, 25, 50, 100, 150)
design2 <- c(1/6, 1/6, 1/6, 1/6, 1/6, 1/6)
crit2 <- calcCrit(design2, fMod, weights, doses2, clinRel=0.2)
## ratio of asymptotic variances (constant cancels)
exp(des$crit-crit2)
## slightly modified design
design3 <- c(0.3, 0.3, 0.2, 0, 0, 0.2)
crit3 <- calcCrit(design3, fMod, weights, doses2, clinRel=0.2)
## ratio of asymptotic variances
exp(des$crit-crit3)
## Example (ii) Dette et al. (2008), p. 1230, Table 5, line 5
## calculate optimal design for beta model
fmods <- list(betaMod = c(0.33, 2.31))
doses <- c(0, 0.49, 25.2, 108.07, 150)
fMod <- fullMod(fmods, doses, base=0, maxEff=0.4, scal=200)
weights <- 1
deswgts <- calcOptDesign(fMod, weights, doses, clinRel=0.1,
scal=200, control=list(maxit=1000))
## now compare this design to equal allocations on
## 0, 10, 25, 50, 100, 150
doses2 <- c(0, 10, 25, 50, 100, 150)
design2 <- c(1/6, 1/6, 1/6, 1/6, 1/6, 1/6)
crit2 <- calcCrit(design2, fMod, weights, doses2, clinRel=0.1, scal=200)
## ratio of asymptotic variances
exp(deswgts$crit-crit2)
## example with matrix
designs <- rbind(c(0.25,0.5,0.25), c(0.5,0.25,0.25), c(0.34,0.33,0.33))
mods <- list(emax = 25)
doses <- c(0, 18.75, 150)
fMod <- fullMod(mods, doses, base=0, maxEff=1)
weights <- 1
calcCrit(designs, fMod, weights, doses, clinRel = 0.2)
Run the code above in your browser using DataLab