# Load an expressionSet:
library(leukemiasEset)
data(leukemiasEset)
# Select the train samples:
trainSamples<- c(1:10, 13:22, 25:34, 37:46, 49:58)
# summary(leukemiasEset$LeukemiaType[trainSamples])
## Not run:
# ######
# # Calculate/plot the significant genes (+ info) of a dataset
# # without training classifier/calculating network
# ######
# # Return only significant genes ranking (default)
# signGenesRanking <- calculateGenesRanking(leukemiasEset[,trainSamples],
# sampleLabels="LeukemiaType")
# numGenes(signGenesRanking)
#
# # Return the full genes ranking:
# fullRanking <- calculateGenesRanking(leukemiasEset[,trainSamples],
# sampleLabels="LeukemiaType", returnRanking="full")
# numGenes(fullRanking)
# numSignificantGenes(fullRanking)
# # The significant genes can then be extracted from it:
# signGenesRanking2 <- getTopRanking(fullRanking,
# numGenesClass=numSignificantGenes(fullRanking))
# numGenes(signGenesRanking2)
#
# # Changing the posterior probability required to consider genes significant:
# signGenesRanking90 <- calculateGenesRanking(leukemiasEset[,trainSamples],
# sampleLabels="LeukemiaType", lpThreshold=0.9)
# numGenes(signGenesRanking90)
# ## End(Not run)
######
# Ploting previously calculated rankings:
######
# Load or calculate a ranking (or a classifier with geNetClassifier)
data(leukemiasClassifier) # Sample trained classifier, @genesRanking
# Default plot:
# - equivalent to plot(leukemiasClassifier@genesRanking)
# - in this case, the previously calculated 'fullRanking'
# is equivalent to 'leukemiasClassifier@genesRanking'
calculateGenesRanking(precalcGenesRanking=leukemiasClassifier@genesRanking)
# Changing arguments:
calculateGenesRanking(precalcGenesRanking=leukemiasClassifier@genesRanking,
numGenesPlot=5000, plotTitle="Leukemias", lpThreshold=0.9)
Run the code above in your browser using DataLab